Aberrant RL2 O-GlcNAc antibody reactivity against serum-IgA1 of patients with colorectal cancer


O-GlcNAcylation, a single attachment of N-acetylglucosamine (GlcNAc) on serine and threonine residues, plays important roles in normal and pathobiological states of many diseases. Aberrant expression of O-GlcNAc modification was found in many types of cancer including colorectal cancer (CRC). This modification mainly occurs in nuclear-cytoplasmic proteins; however, it can exist in some extracellular and secretory proteins. In this study, we investigated whether O-GlcNAc-modified proteins are present in serum of patients with CRC. Serum glycoproteins of CRC patients and healthy controls were enriched by wheat germ agglutinin, a glycan binding protein specifically binds to terminal GlcNAc and sialic acid. Two-dimensional gel electrophoresis, RL2 O-GlcNAc immunoblotting, affinity purification, and mass spectrometry were performed. The results showed that RL2 O-GlcNAc antibody predominantly reacted against serum immunoglobulin A1 (IgA1). The levels of RL2-reacted IgA were significantly increased while total IgA were not different in patients with CRC compared to those of healthy controls. Analyses by ion trap mass spectrometry using collision-induced dissociation and electron-transfer dissociation modes revealed one O-linked N-acetylhexosamine modification site at Ser268 located in the heavy constant region of IgA1; unfortunately, it cannot be discriminated whether it was N-acetylglucosamine or N-acetylgalactosamine because of their identical molecular mass. Although failed to demonstrate unequivocally it was O-GlcNAc, these data indicated that serum-IgA had an aberrantly increased reactivity against RL2 O-GlcNAc antibody in CRC patients. This specific glycosylated form of serum-IgA1 will expand the spectrum of aberrant glycosylation which provides valuable information to cancer glycobiology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The authors confirm that data supporting the findings of this study are available within the article and its supplementary materials.

Code availability

Not applicable.



two dimensional gel electrophoresis




β-Elimination/Michael Addition with DTT


coomassie brilliant blue R-250


collison-induced dissociation


colorectal cancer




EGF repeat-specific O-GlcNAc-transferase


electron-transfer dissociation


extracellular vesicles




higher energy collision dissociation


isoelectric focusing


immunoglobulin A


immunoglobulin A1

IPG strip:

immobilized pH gradient strip


liquid chromatography tandem mass spectrometry




O-GlcNAc transferase


anti O-GlcNAc antibody


Tris-Buffered Saline + 0.1 % TWEEN20


trifluroacetic acid


wheat germ agglutinin


  1. 1.

    Reis, C.A., Osorio, H., Silva, L., Gomes, C., David, L.: Alterations in glycosylation as biomarkers for cancer detection. J. Clin. Pathol. 63(4), 322–329 (2010). https://doi.org/10.1136/jcp.2009.071035

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Moremen, K.W., Tiemeyer, M., Nairn, A.V.: Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13(7), 448–462 (2012). https://doi.org/10.1038/nrm3383

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Pinho, S.S., Reis, C.A.: Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer. 15(9), 540–555 (2015). https://doi.org/10.1038/nrc3982

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Hart, G.W., Housley, M.P., Slawson, C.: Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446(7139), 1017–1022 (2007)

    CAS  Article  Google Scholar 

  5. 5.

    Zachara, N.E., Vosseller, K., Hart, G.W.: Detection and analysis of proteins modified by o-linked N-acetylglucosamine. Curr. Protoc. Mol. Biol. Chap. 17, Unit17 16 (2011). https://doi.org/10.1002/0471142727.mb1706s95

  6. 6.

    Ma, Z., Vosseller, K.: O-GlcNAc in cancer biology. Amino Acids. 45(4), 719–733 (2013). https://doi.org/10.1007/s00726-013-1543-8

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Chaiyawat, P., Chokchaichamnankit, D., Lirdprapamongkol, K., Srisomsap, C., Svasti, J., Champattanachai, V.: Alteration of O-GlcNAcylation affects serine phosphorylation and regulates gene expression and activity of pyruvate kinase M2 in colorectal cancer cells. Oncol. Rep. 34(4), 1933–1942 (2015). https://doi.org/10.3892/or.2015.4178

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Phueaouan, T., Chaiyawat, P., Netsirisawan, P., Chokchaichamnankit, D., Punyarit, P., Srisomsap, C., Svasti, J., Champattanachai, V.: Aberrant O-GlcNAc-modified proteins expressed in primary colorectal cancer. Oncol. Rep. 30(6), 2929–2936 (2013). https://doi.org/10.3892/or.2013.2794

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Chaiyawat, P., Weeraphan, C., Netsirisawan, P., Chokchaichamnankit, D., Srisomsap, C., Svasti, J., Champattanachai, V.: Elevated O-GlcNAcylation of extracellular vesicle proteins derived from metastatic colorectal cancer cells. Cancer Genomics Proteomics 13(5), 387–398 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Varshney, S., Stanley, P.: EOGT and O-GlcNAc on secreted and membrane proteins. Biochem. Soc. Trans. 45(2), 401–408 (2017). https://doi.org/10.1042/BST20160165

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sakaidani, Y., Nomura, T., Matsuura, A., Ito, M., Suzuki, E., Murakami, K., Nadano, D., Matsuda, T., Furukawa, K., Okajima, T.: O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. Nat. Commun. 2, 583 (2011). https://doi.org/10.1038/ncomms1591

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Champattanachai, V., Netsirisawan, P., Chaiyawat, P., Phueaouan, T., Charoenwattanasatien, R., Chokchaichamnankit, D., Punyarit, P., Srisomsap, C., Svasti, J.: Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer. Proteomics. 13(14), 2088–2099 (2013). https://doi.org/10.1002/pmic.201200126

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Cao, W., Cao, J., Huang, J., Yao, J., Yan, G., Xu, H., Yang, P.: Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods. PLoS One. 8(10), e76399 (2013). https://doi.org/10.1371/journal.pone.0076399

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Charoensuksai, P., Kuhn, P., Wang, L., Sherer, N., Xu, W.: O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity. Biochem. J. 466(3), 587–599 (2015). https://doi.org/10.1042/BJ20141072

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Di Domenico, F., Owen, J.B., Sultana, R., Sowell, R.A., Perluigi, M., Cini, C., Cai, J., Pierce, W.M., Butterfield, D.A.: The wheat germ agglutinin-fractionated proteome of subjects with Alzheimer’s disease and mild cognitive impairment hippocampus and inferior parietal lobule: Implications for disease pathogenesis and progression. J. Neurosci. Res. 88(16), 3566–3577 (2010). https://doi.org/10.1002/jnr.22528

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Meillour, N.-L., Vercoutter-Edouart, P., Hilliou, A.S., Le Danvic, F., Levy, C.: Proteomic analysis of pig (Sus scrofa) olfactory soluble proteome reveals O-Linked-N-Acetylglucosaminylation of secreted odorant-binding proteins. Front. Endocrinol. (Lausanne) 5, 202 (2014). https://doi.org/10.3389/fendo.2014.00202

    Article  Google Scholar 

  17. 17.

    Kerr, M.A.: The structure and function of human IgA. Biochem. J. 271(2), 285–296 (1990)

    CAS  Article  Google Scholar 

  18. 18.

    Tanaka, A., Iwase, H., Hiki, Y., Kokubo, T., Ishii-Karakasa, I., Toma, K., Kobayashi, Y., Hotta, K.: Evidence for a site-specific fucosylation of N-linked oligosaccharide of immunoglobulin A1 from normal human serum. Glycoconj. J. 15(10), 995–1000 (1998)

    CAS  Article  Google Scholar 

  19. 19.

    Lehoux, S., Mi, R., Aryal, R.P., Wang, Y., Schjoldager, K.T., Clausen, H., van Die, I., Han, Y., Chapman, A.B., Cummings, R.D., Ju, T.: Identification of distinct glycoforms of IgA1 in plasma from patients with immunoglobulin A (IgA) nephropathy and healthy individuals. Mol. Cell. Proteomics 13(11), 3097–3113 (2014). https://doi.org/10.1074/mcp.M114.039693

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zauner, G., Selman, M.H., Bondt, A., Rombouts, Y., Blank, D., Deelder, A.M., Wuhrer, M.: Glycoproteomic analysis of antibodies. Mol. Cell. Proteomics 12(4), 856–865 (2013). https://doi.org/10.1074/mcp.R112.026005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Pillebout, E., Jamin, A., Ayari, H., Housset, P., Pierre, M., Sauvaget, V., Viglietti, D., Deschenes, G., Monteiro, R.C., Berthelot, L., group, H.S.: Biomarkers of IgA vasculitis nephritis in children. PLoS One 12(11), e0188718 (2017). https://doi.org/10.1371/journal.pone.0188718

  22. 22.

    Halim, A., Westerlind, U., Pett, C., Schorlemer, M., Ruetschi, U., Brinkmalm, G., Sihlbom, C., Lengqvist, J., Larson, G., Nilsson, J.: Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC-MS/MS of glycopeptides. J. Proteome Res. 13(12), 6024–6032 (2014). https://doi.org/10.1021/pr500898r

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Greis, K.D., Hayes, B.K., Comer, F.I., Kirk, M., Barnes, S., Lowary, T.L., Hart, G.W.: Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal. Biochem. 234(1), 38–49 (1996). https://doi.org/10.1006/abio.1996.0047

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Takahashi, K., Wall, S.B., Suzuki, H., Smith, ADt., Hall, S., Poulsen, K., Kilian, M., Mobley, J.A., Julian, B.A., Mestecky, J., Novak, J., Renfrow, M.B.: Clustered O-glycans of IgA1: defining macro- and microheterogeneity by use of electron capture/transfer dissociation. Mol. Cell. Proteomics 9(11), 2545–2557 (2010). https://doi.org/10.1074/mcp.M110.001834

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Mattu, T.S., Pleass, R.J., Willis, A.C., Kilian, M., Wormald, M.R., Lellouch, A.C., Rudd, P.M., Woof, J.M., Dwek, R.A.: The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcalpha receptor interactions. J. Biol. Chem. 273(4), 2260–2272 (1998). https://doi.org/10.1074/jbc.273.4.2260

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Tarelli, E., Smith, A.C., Hendry, B.M., Challacombe, S.J., Pouria, S.: Human serum IgA1 is substituted with up to six O-glycans as shown by matrix assisted laser desorption ionisation time-of-flight mass spectrometry. Carbohydr. Res. 339(13), 2329–2335 (2004). https://doi.org/10.1016/j.carres.2004.07.011

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Zachara, N., Akimoto, Y., Hart, G.W.: The O-GlcNAc Modification. In: rd, Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 239–251. Cold Spring Harbor, New York (2015)

Download references


The authors would like to thank Dr. Carlito B Lebrilla, Professor of Department of Chemistry, University of California, Davis, CA, USA, for his suggestions and revision of the Manuscript. This work was supported by the National Science and Technology Development Agency (Grant no. P-12-01487) and the Chulabhorn Research Institute (Grant no. BC-2020-02), Thailand.


This work was financially supported by the National Science and Technology Development Agency (Grant no. P-12-01487) and the Chulabhorn Research Institute (Grant no. BC-2020-02), Thailand. 

Author information




CV and VC conceived, designed the study, wrote and drafted the manuscript. CV and TS analyzed the mass spectrometry data. TS, PN, and PC worked in sample preparation and performed/analyzed gel proteomics and immunoblotting. NP provided serum samples and clinical data and reviewed the manuscript. DC prepared and ran samples for the LC-MS/MS. CS interpreted and edited the manuscript. JS reviewed and edited the manuscript and was involved in the conception of the study. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Voraratt Champattanachai.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

Ethic was approved by the Institutional Review Board of the Royal Thai Army Medical Department, Thailand (S012h/56), Bangkok, Thailand.

Consent of participate

The CRC patient and the healthy control participants gave informed consent at Phramongkutklao Hospital, Bangkok, Thailand.

Consent of publication

The authors gave consent for information about data and materials to be published in Glycoconjugate Journal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


The MS/MS database search of eleven protein spots by in-gel tryptic digestion (XLSX 692 kb)


The MS/MS database search of DTT-peptides by in-solution tryptic digestion (XLSX 488 kb)


The MS/MS searches of O-HexNAc peptide of IgA1 by Compass Data Analysis of Bruker (XLSX 809 kb)


The treatment of purified serum-IgA samples digested with O-GlcNAcase (OGA) (DOC 207 kb)


The extracted ion chromatogram (EIC) of the peptides with and without HexNAc modification (DOC 280 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verathamjamras, C., Sriwitool, Te., Netsirisawan, P. et al. Aberrant RL2 O-GlcNAc antibody reactivity against serum-IgA1 of patients with colorectal cancer. Glycoconj J (2021). https://doi.org/10.1007/s10719-021-09978-8

Download citation


  • Colorectal cancer
  • Immunoglobulin A1
  • O-GlcNAc
  • RL2 antibody
  • Wheat germ agglutinin