Expanding our understanding of the role of microbial glycoproteomes through high-throughput mass spectrometry approaches


Protein glycosylation is increasingly recognised as an essential requirement for effective microbial infections. Within microbial pathogen’s protein glycosylation is used for both defensive and offensive purposes; enabling pathogens to fortify themselves against the host immune response or to disarm the host’s ability to resist infection. Although microbial protein glycosylation systems have been recognised for nearly two decades only recently has the true extend of protein glycosylation within microbes begun to be appreciated. A key enabler for this conceptual shift has been the development and application of modern approaches for the characterisation of glycosylation. Over the last decade my research has focused on the development of proteomic tools to probe microbial glycosylation. By developing workflows for glycopeptide enrichment and identification we have demostrated that it is now possible to characterise the glycoproteomes of microbial species in a truely high-throughput manner. Using these high-throughput approaches we have shown a number of bacterial species modify multiple proteins including members of the Campylobacter genus and the pathogens A. baumannii, R. solanacearum and B. cenocepacia. These studies have established that bacterial glycosylation is widespread, that glycan microheterogeneity is common place and that an extensive array of glycans are used to decorate protein compared to Eukaryotic glycosylation systems. Excitingly these approaches developed to characterise O- and N-linked bacterial glycosylation systems are equally amenable to studying newly discovered forms of microbial glycosylation such as Arginine glycosylation as well as glycosylation within the parasitic eukaryotic organisms T. gondii and P. falciparum. This work demonstrates that MS approaches can now be considered an indispensable tool for the elucidation and tracking of microbial glycosylation events.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Colley KJ, Varki A, Kinoshita T. Cellular Organization of Glycosylation. In: rd, Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. Essentials of Glycobiology. Cold Spring Harbor (NY)2015. p. 41–9

  2. 2.

    Zachara N, Akimoto Y, Hart GW. The O-GlcNAc Modification. In: rd, Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. Essentials of Glycobiology. Cold Spring Harbor (NY)2015. p. 239–51

  3. 3.

    Stanley P, Taniguchi N, Aebi M. N-Glycans. In: rd, Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. Essentials of Glycobiology. Cold Spring Harbor (NY)2015. p. 99–111

  4. 4.

    Oswald, D.M., Cobb, B.A.: Emerging glycobiology tools: a renaissance in accessibility. Cell. Immunol. 333, 2–8. Epub 2018/05/16 (2018). https://doi.org/10.1016/j.cellimm.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Esko JD, Bertozzi C, Schnaar RL. Chemical Tools for Inhibiting Glycosylation. In: rd, Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. Essentials of Glycobiology. Cold Spring Harbor (NY)2015. p. 701–12

  6. 6.

    Cummings RD, Darvill AG, Etzler ME, Hahn MG. Glycan-Recognizing Probes as Tools. In: rd, Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. Essentials of Glycobiology. Cold Spring Harbor (NY)2015. p. 611–25

  7. 7.

    Iwashkiw, J.A., Vozza, N.F., Kinsella, R.L., Feldman, M.F.: Pour some sugar on it: the expanding world of bacterial protein O-linked glycosylation. Mol. Microbiol. 89(1), 14–28 (2013). https://doi.org/10.1111/mmi.12265

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Nothaft, H., Szymanski, C.M.: Protein glycosylation in bacteria: sweeter than ever. Nat. Rev. Microbiol. 8(11), 765–778 (2010). https://doi.org/10.1038/nrmicro2383

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Bandini, G., Albuquerque-Wendt, A., Hegermann, J., Samuelson, J., Routier, F.H.: Protein O- and C-glycosylation pathways in toxoplasma gondii and Plasmodium falciparum. Parasitology. 1–12. Epub 2019/02/19 (2019). https://doi.org/10.1017/S0031182019000040

  10. 10.

    Yakubu RR, Weiss LM, de Silmon Monerri NC. Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies. Molecular microbiology. 2018;107(1):1–23. Epub 2017/10/21. https://doi.org/10.1111/mmi.13867. PubMed PMID: 29052917; PubMed Central PMCID: PMCPMC5746028

  11. 11.

    Young, N.M., Brisson, J.R., Kelly, J., Watson, D.C., Tessier, L., Lanthier, P.H., Jarrell, H.C., Cadotte, N., St. Michael, F., Aberg, E., Szymanski, C.M.: Structure of the N-linked glycan present on multiple glycoproteins in the gram-negative bacterium, campylobacter jejuni. J. Biol. Chem. 277(45), 42530–42539. Epub 2002/08/21 (2002). https://doi.org/10.1074/jbc.M206114200

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Wacker, M., Linton, D., Hitchen, P.G., Nita-Lazar, M., Haslam, S.M., North, S.J., Panico, M., Morris, H.R., Dell, A., Wren, B.W., Aebi, M.: N-linked glycosylation in campylobacter jejuni and its functional transfer into E. coli. Science. 298(5599), 1790–1793. Epub 2002/12/03 (2002). https://doi.org/10.1126/science.298.5599.1790

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Lu, Q., Li, S., Shao, F.: Sweet talk: protein glycosylation in bacterial interaction with the host. Trends Microbiol. 23(10), 630–641. Epub 2015/10/05 (2015). https://doi.org/10.1016/j.tim.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Karlyshev, A.V., Everest, P., Linton, D., Cawthraw, S., Newell, D.G., Wren, B.W.: The campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology. 150(Pt 6), 1957–1964. Epub 2004/06/09 (2004). https://doi.org/10.1099/mic.0.26721-0

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Kowarik M, Young NM, Numao S, Schulz BL, Hug I, Callewaert N, et al. Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 2006;25(9):1957–66. Epub 2006/04/19. https://doi.org/10.1038/sj.emboj.7601087. PubMed PMID: 16619027; PubMed Central PMCID: PMCPMC1456941

  16. 16.

    Scott, N.E., Bogema, D.R., Connolly, A.M., Falconer, L., Djordjevic, S.P., Cordwell, S.J.: Mass spectrometric characterization of the surface-associated 42 kDa lipoprotein JlpA as a glycosylated antigen in strains of campylobacter jejuni. J. Proteome Res. 8(10), 4654–4664 (2009). https://doi.org/10.1021/pr900544x

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Speers, A.E., Wu, C.C.: Proteomics of integral membrane proteins--theory and application. Chem. Rev. 107(8), 3687–3714. Epub 2007/08/09 (2007). https://doi.org/10.1021/cr068286z

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Zhang, H., Li, X.J., Martin, D.B., Aebersold, R.: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21(6), 660–6. Epub 2003/05/20–666 (2003). https://doi.org/10.1038/nbt827

  19. 19.

    Sun, B., Ranish, J.A., Utleg, A.G., White, J.T., Yan, X., Lin, B., Hood, L.: Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Molecular & Cellular Proteomics : MCP. 6(1), 141–149. Epub 2006/11/01 (2007). https://doi.org/10.1074/mcp.T600046-MCP200

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Hagglund, P., Bunkenborg, J., Elortza, F., Jensen, O.N., Roepstorff, P.: A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res. 3(3), 556–566 (2004) Epub 2004/07/16

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AV, Crossett B, et al. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Molecular & cellular proteomics : MCP. 2011;10(2):M000031-MCP201. https://doi.org/10.1074/mcp.M000031-MCP201. PubMed PMID: 20360033; PubMed Central PMCID: PMCPMC3033663

  22. 22.

    Ding W, Nothaft H, Szymanski CM, Kelly J. Identification and quantification of glycoproteins using ion-pairing normal-phase liquid chromatography and mass spectrometry. Molecular & cellular proteomics : MCP. 2009;8(9):2170–85. Epub 2009/06/16. https://doi.org/10.1074/mcp.M900088-MCP200. PubMed PMID: 19525481; PubMed Central PMCID: PMCPMC2742440

  23. 23.

    Seipert RR, Dodds ED, Lebrilla CB. Exploiting differential dissociation chemistries of O-linked glycopeptide ions for the localization of mucin-type protein glycosylation. Journal of proteome research. 2009;8(2):493–501. Epub 2008/12/11. https://doi.org/10.1021/pr8007072. PubMed PMID: 19067536; PubMed Central PMCID: PMCPMC2680678

  24. 24.

    Alley Jr., W.R., Mechref, Y., Novotny, M.V.: Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun. Mass Spectrom. 23(1), 161–170. Epub 2008/12/10 (2009). https://doi.org/10.1002/rcm.3850

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Nilsson, J., Ruetschi, U., Halim, A., Hesse, C., Carlsohn, E., Brinkmalm, G., et al.: Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods. 6(11. Epub 2009/10/20), 809–811 (2009). https://doi.org/10.1038/nmeth.1392

  26. 26.

    Hinneburg H, Stavenhagen K, Schweiger-Hufnagel U, Pengelley S, Jabs W, Seeberger PH, et al. The Art of Destruction: Optimizing Collision Energies in Quadrupole-Time of Flight (Q-TOF) Instruments for Glycopeptide-Based Glycoproteomics. J Am Soc Mass Spectrom. 2016;27(3):507–19. Epub 2016/01/06. https://doi.org/10.1007/s13361-015-1308-6. PubMed PMID: 26729457; PubMed Central PMCID: PMCPMC4756043

  27. 27.

    Segu, Z.M., Mechref, Y.: Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun. Mass Spectrom. 24(9), 1217–1225. Epub 2010/04/15 (2010). https://doi.org/10.1002/rcm.4485

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Hart-Smith, G., Raftery, M.J.: Detection and characterization of low abundance glycopeptides via higher-energy C-trap dissociation and orbitrap mass analysis. J. Am. Soc. Mass Spectrom. 23(1), 124–140. Epub 2011/11/16 (2012). https://doi.org/10.1007/s13361-011-0273-y

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Saba J, Dutta S, Hemenway E, Viner R. Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation. Int J Proteomics. 2012;2012:560391. https://doi.org/10.1155/2012/560391. PubMed PMID: 22701174; PubMed Central PMCID: PMCPMC3369405

  30. 30.

    Scott NE, Nothaft H, Edwards AV, Labbate M, Djordjevic SP, Larsen MR, et al. Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine. The Journal of biological chemistry. 2012;287(35):29384–96. Epub 2012/07/05. https://doi.org/10.1074/jbc.M112.380212. PubMed PMID: 22761430; PubMed Central PMCID: PMCPMC3436159

  31. 31.

    Scott, N.E., Marzook, N.B., Cain, J.A., Solis, N., Thaysen-Andersen, M., Djordjevic, S.P., Packer, N.H., Larsen, M.R., Cordwell, S.J.: Comparative proteomics and glycoproteomics reveal increased N-linked glycosylation and relaxed sequon specificity in campylobacter jejuni NCTC11168 O. J. Proteome Res. 13(11), 5136–5150. Epub 2014/08/06 (2014). https://doi.org/10.1021/pr5005554

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C, Reiz B, Cordwell SJ, Whittal R, Schild S, Feldman MF Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog. 2012;8(6):e1002758. https://doi.org/10.1371/journal.ppat.1002758. PubMed PMID: 22685409; PubMed Central PMCID: PMC3369928

  33. 33.

    Lees-Miller, R.G., Iwashkiw, J.A., Scott, N.E., Seper, A., Vinogradov, E., Schild, S., Feldman, M.F.: A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol. Microbiol. 89(5), 816–830. Epub 2013/06/21 (2013). https://doi.org/10.1111/mmi.12300

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Scott NE, Kinsella RL, Edwards AV, Larsen MR, Dutta S, Saba J, et al. Diversity within the O-linked protein glycosylation systems of acinetobacter species. Molecular & cellular proteomics : MCP 2014;13(9):2354–2370. https://doi.org/10.1074/mcp.M114.038315. PubMed PMID: 24917611; PubMed Central PMCID: PMC4159654

  35. 35.

    Harding, C.M., Nasr, M.A., Kinsella, R.L., Scott, N.E., Foster, L.J., Weber, B.S., Fiester, S.E., Actis, L.A., Tracy, E.N., Munson Jr., R.S., Feldman, M.F.: Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O-glycosylation of multiple proteins. Mol. Microbiol. 96(5), 1023–1041. Epub 2015/03/03 (2015). https://doi.org/10.1111/mmi.12986

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Elhenawy W, Scott NE, Tondo ML, Orellano EG, Foster LJ, Feldman MF. Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum. Glycobiology. 2016;26(3):301–11. https://doi.org/10.1093/glycob/cwv098. PubMed PMID: 26531228; PubMed Central PMCID: PMCPMC4736539

  37. 37.

    Lithgow, K.V., Scott, N.E., Iwashkiw, J.A., Thomson, E.L., Foster, L.J., Feldman, M.F., et al.: A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol. Microbiol. 92(1), 116–137 (2014). https://doi.org/10.1111/mmi.12540

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S., Heck, A.J.: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4(4), 484–494 (2009). https://doi.org/10.1038/nprot.2009.21

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Li, S., Zhang, L., Yao, Q., Li, L., Dong, N., Rong, J., Gao, W., Ding, X., Sun, L., Chen, X., Chen, S., Shao, F.: Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature. 501(7466), 242–246 (2013). https://doi.org/10.1038/nature12436

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M, Robinson KS, et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature. 2013;501(7466):247–51. https://doi.org/10.1038/nature12524. PubMed PMID: 24025841; PubMed Central PMCID: PMCPMC3836246

  41. 41.

    Pan, M., Li, S., Li, X., Shao, F., Liu, L., Hu, H.G.: Synthesis of and specific antibody generation for glycopeptides with arginine N-GlcNAcylation. Angew. Chem. 53(52), 14517–14521 (2014). https://doi.org/10.1002/anie.201407824

    Article  CAS  Google Scholar 

  42. 42.

    Udeshi ND, Mertins P, Svinkina T, Carr SA. Large-scale identification of ubiquitination sites by mass spectrometry. Nature protocols. 2013;8(10):1950–60. https://doi.org/10.1038/nprot.2013.120. PubMed PMID: 24051958; PubMed Central PMCID: PMCPMC4725055

  43. 43.

    Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, et al. Refined preparation and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Molecular & cellular proteomics : MCP. 2013;12(3):825–31. https://doi.org/10.1074/mcp.O112.027094. PubMed PMID: 23266961; PubMed Central PMCID: PMCPMC3591673

  44. 44.

    Boersema PJ, Foong LY, Ding VM, Lemeer S, van Breukelen B, Philp R, et al. In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Molecular & cellular proteomics : MCP. 2010;9(1):84–99. Epub 2009/09/23. https://doi.org/10.1074/mcp.M900291-MCP200. PubMed PMID: 19770167; PubMed Central PMCID: PMCPMC2808269

  45. 45.

    Scott NE, Giogha C, Pollock GL, Kennedy CL, Webb AI, Williamson NA, et al. The bacterial arginine glycosyltransferase effector NleB preferentially modifies Fas-associated death domain protein (FADD). The Journal of biological chemistry. 2017;292(42):17337–50. https://doi.org/10.1074/jbc.M117.805036. PubMed PMID: 28860194; PubMed Central PMCID: PMCPMC5655511

  46. 46.

    Newson JP, Scott NE, Yeuk Wah Chung I, Wong Fok Lung T, Giogha C, Gan J, et al. Salmonella effectors SseK1 and SseK3 target death domain proteins in the TNF and TRAIL signaling pathways. Molecular & cellular proteomics : MCP. 2019. Epub 2019/03/25. https://doi.org/10.1074/mcp.RA118.001093

  47. 47.

    Gowda, D.C., Davidson, E.A.: Protein glycosylation in the malaria parasite. Parasitol. Today. 15(4), 147–152 (1999) Epub 1999/05/14

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Bandini G, Haserick JR, Motari E, Ouologuem DT, Lourido S, Roos DS, et al. O-fucosylated glycoproteins form assemblies in close proximity to the nuclear pore complexes of Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(41):11567–72. Epub 2016/09/25. https://doi.org/10.1073/pnas.1613653113. PubMed PMID: 27663739; PubMed Central PMCID: PMCPMC5068260

  49. 49.

    Swearingen KE, Lindner SE, Shi L, Shears MJ, Harupa A, Hopp CS, et al. Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics. PLoS pathogens. 2016;12(4):e1005606. Epub 2016/04/30. https://doi.org/10.1371/journal.ppat.1005606. PubMed PMID: 27128092; PubMed Central PMCID: PMCPMC4851412

  50. 50.

    Lopaticki S, Yang ASP, John A, Scott NE, Lingford JP, O'Neill MT, et al. Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts. Nat Commun. 2017;8(1):561. https://doi.org/10.1038/s41467-017-00571-y. PubMed PMID: 28916755; PubMed Central PMCID: PMCPMC5601480

  51. 51.

    Huynh MH, Carruthers VB. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS pathogens. 2006;2(8):e84. Epub 2006/08/29. https://doi.org/10.1371/journal.ppat.0020084. PubMed PMID: 16933991; PubMed Central PMCID: PMCPMC1550269

  52. 52.

    Khurana, S., Coffey, M.J., John, A., Uboldi, A.D., Huynh, M.H., Stewart, R.J., Carruthers, V.B., Tonkin, C.J., Goddard-Borger, E.D., Scott, N.E.: Protein O-fucosyltransferase 2-mediated O-glycosylation of the adhesin MIC2 is dispensable for toxoplasma gondii tachyzoite infection. J. Biol. Chem. 294, 1541–1553 (2018. Epub 2018/12/06). https://doi.org/10.1074/jbc.RA118.005357

    Article  PubMed  Google Scholar 

  53. 53.

    Bandini G, Leon DR, Hoppe CM, Zhang Y, Agop-Nersesian C, Shears MJ, et al. O-Fucosylation of thrombospondin-like repeats is required for processing of microneme protein 2 and for efficient host cell invasion by Toxoplasma gondii tachyzoites. The Journal of biological chemistry. 2019;294(6):1967–83. Epub 2018/12/13. https://doi.org/10.1074/jbc.RA118.005179. PubMed PMID: 30538131; PubMed Central PMCID: PMCPMC6369279

  54. 54.

    Just, I., Selzer, J., Wilm, M., von Eichel-Streiber, C., Mann, M., Aktories, K.: Glucosylation of rho proteins by Clostridium difficile toxin B. Nature. 375(6531), 500–503 (1995). https://doi.org/10.1038/375500a0

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Riley NM, Hebert AS, Westphall MS, Coon JJ. Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat Commun. 2019;10(1):1311. Epub 2019/03/23. https://doi.org/10.1038/s41467-019-09222-w. PubMed PMID: 30899004; PubMed Central PMCID: PMCPMC6428843

  56. 56.

    Madsen JA, Ko BJ, Xu H, Iwashkiw JA, Robotham SA, Shaw JB, et al. Concurrent automated sequencing of the glycan and peptide portions of O-linked glycopeptide anions by ultraviolet photodissociation mass spectrometry. Anal Chem. 2013;85(19):9253–61. https://doi.org/10.1021/ac4021177. PubMed PMID: 24006841; PubMed Central PMCID: PMCPMC3816934

  57. 57.

    Lassak J, Keilhauer EC, Furst M, Wuichet K, Godeke J, Starosta AL, et al. Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nat Chem Biol. 2015;11(4):266–70. https://doi.org/10.1038/nchembio.1751. PubMed PMID: 25686373; PubMed Central PMCID: PMCPMC4451828

Download references

Author information



Corresponding author

Correspondence to Nichollas E. Scott.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scott, N.E. Expanding our understanding of the role of microbial glycoproteomes through high-throughput mass spectrometry approaches. Glycoconj J 36, 259–266 (2019). https://doi.org/10.1007/s10719-019-09875-1

Download citation


  • IGO award
  • Glycopeptide
  • Early career award
  • Mass spectrometry
  • Microbial glycosylation