Skip to main content
Log in

Neuronal membrane dynamics as fine regulator of sphingolipid composition

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sphingolipid metabolism is an intricate network of several interdependent and co-regulated pathways. In addition to the mainstream biosynthetic and catabolic pathways, several processes, even if less important in contributing to the final tissue sphingolipid composition from the quantitative point of view, might become relevant when sphingolipid metabolism is for any reason dysregulated and concur to the onset of neuronal pathologies. The main subcellular sites involved in the mainstream metabolic pathway are represented by the Golgi apparatus (for the biosynthesis) and by the lysosomes (for catabolism). On the other hand, the minor collateral pathways are associated with the plasma membrane and membranes of other organelles, and likely play important roles in the local regulation of membrane dynamics and contribute to maintain a perfect membrane organization functional to the physiology of the cell. In this review, we will consider few aspects of the sphingolipid metabolic pathway depending by the dynamic of the membranes that seems to become relevant in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ikeda, M., Kihara, A., Igarashi, Y.: Lipid asymmetry of the eukaryotic plasma membrane: functions and related enzymes. Biol. Pharm. Bull. 29(8), 1542–1546 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. van Meer, G., Voelker, D.R., Feigenson, G.W.: Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9(2), 112–124 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Merrill Jr., A.H.: Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev. 111(10), 6387–6422 (2011). https://doi.org/10.1021/cr2002917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature. 387(6633), 569–572 (1997). https://doi.org/10.1038/42408

    Article  CAS  Google Scholar 

  5. Sonnino, S., Prinetti, A., Mauri, L., Chigorno, V., Tettamanti, G.: Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem. Rev. 106(6), 2111–2125 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Sonnino, S., Prinetti, A.: Membrane domains and the "lipid raft" concept. Curr. Med. Chem. 20(1), 4–21 (2013) CMC-EPUB-20121108-2 [pii]

    CAS  PubMed  Google Scholar 

  7. Simons, K., Toomre, D.: Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1(1), 31–39 (2000). https://doi.org/10.1038/35036052

    Article  CAS  PubMed  Google Scholar 

  8. Prinetti, A., Loberto, N., Chigorno, V., Sonnino, S.: Glycosphingolipid behaviour in complex membranes. Biochim. Biophys. Acta. 1788(1), 184–193 (2009). https://doi.org/10.1016/j.bbamem.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  9. Kitatani, K., Idkowiak-Baldys, J., Hannun, Y.A.: The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal. 20(6), 1010–1018 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Blott, E.J., Griffiths, G.M.: Secretory lysosomes. Nat. Rev. Mol. Cell Biol. 3(2), 122–131 (2002). https://doi.org/10.1038/nrm732

    Article  CAS  PubMed  Google Scholar 

  11. Baron, R., Neff, L., Louvard, D., Courtoy, P.J.: Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J. Cell Biol. 101(6), 2210–2222 (1985)

    Article  CAS  PubMed  Google Scholar 

  12. Draeger, A., Schoenauer, R., Atanassoff, A.P., Wolfmeier, H., Babiychuk, E.B.: Dealing with damage: plasma membrane repair mechanisms. Biochimie. 107(Pt A), 66–72 (2014). https://doi.org/10.1016/j.biochi.2014.08.008

    Article  CAS  PubMed  Google Scholar 

  13. Reddy, A., Caler, E.V., Andrews, N.W.: Plasma membrane repair is mediated by ca(2+)-regulated exocytosis of lysosomes. Cell. 106(2), 157–169 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Rothman, J.E.: Mechanisms of intracellular protein transport. Nature. 372(6501), 55–63 (1994). https://doi.org/10.1038/372055a0

    Article  CAS  PubMed  Google Scholar 

  15. Rao, S.K., Huynh, C., Proux-Gillardeaux, V., Galli, T., Andrews, N.W.: Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J. Biol. Chem. 279(19), 20471–20479 (2004). https://doi.org/10.1074/jbc.M400798200

    Article  CAS  PubMed  Google Scholar 

  16. Andrews, N.W., Chakrabarti, S.: There's more to life than neurotransmission: the regulation of exocytosis by synaptotagmin VII. Trends Cell Biol. 15(11), 626–631 (2005). https://doi.org/10.1016/j.tcb.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  17. Tucker, W.C., Chapman, E.R.: Role of synaptotagmin in Ca2+−triggered exocytosis. The Biochemical journal. 366(Pt 1), 1–13 (2002). https://doi.org/10.1042/BJ20020776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arantes, R.M., Andrews, N.W.: A role for synaptotagmin VII-regulated exocytosis of lysosomes in neurite outgrowth from primary sympathetic neurons. J. Neurosci. Off. J. Soc. Neurosci. 26(17), 4630–4637 (2006). https://doi.org/10.1523/JNEUROSCI.0009-06.2006

    Article  CAS  Google Scholar 

  19. Martinez-Arca, S., Alberts, P., Zahraoui, A., Louvard, D., Galli, T.: Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J. Cell Biol. 149(4), 889–900 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martinez-Arca, S., Coco, S., Mainguy, G., Schenk, U., Alberts, P., Bouille, P., Mezzina, M., Prochiantz, A., Matteoli, M., Louvard, D., Galli, T.: A common exocytotic mechanism mediates axonal and dendritic outgrowth. J. Neurosci. Off. J. Soc. Neurosci. 21(11), 3830–3838 (2001)

    Article  CAS  Google Scholar 

  21. Alberts, P., Rudge, R., Hinners, I., Muzerelle, A., Martinez-Arca, S., Irinopoulou, T., Marthiens, V., Tooze, S., Rathjen, F., Gaspar, P., Galli, T.: Cross talk between tetanus neurotoxin-insensitive vesicle-associated membrane protein-mediated transport and L1-mediated adhesion. Mol. Biol. Cell. 14(10), 4207–4220 (2003). https://doi.org/10.1091/mbc.e03-03-0147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raiborg, C., Wenzel, E.M., Pedersen, N.M., Olsvik, H., Schink, K.O., Schultz, S.W., Vietri, M., Nisi, V., Bucci, C., Brech, A., Johansen, T., Stenmark, H.: Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature. 520(7546), 234–238 (2015). https://doi.org/10.1038/nature14359

    Article  CAS  PubMed  Google Scholar 

  23. Aureli, M., Loberto, N., Bassi, R., Ferraretto, A., Perego, S., Lanteri, P., Chigorno, V., Sonnino, S., Prinetti, A.: Plasma membrane-associated glycohydrolases activation by extracellular acidification due to proton exchangers. Neurochem. Res. 37(6), 1296–1307 (2012). https://doi.org/10.1007/s11064-012-0725-1

    Article  CAS  PubMed  Google Scholar 

  24. Samarani, M., Loberto, N., Soldà, G., Straniero, L., Asselta, R., Duga, S., Lunghi, G., Zucca, F.A., Mauri, L., Ciampa, M.G., Schiumarini, D., Bassi, R., Giussani, P., Chiricozzi, E., Prinetti, A., Aureli, M., Sonnino, S.: A lysosome-plasma membrane-sphingolipid axis linking lysosomal storage to cell growth arrest. FASEB J. fj.201701512RR (2018). https://doi.org/10.1096/fj.201701512RR

  25. Gabande-Rodriguez, E., Boya, P., Labrador, V., Dotti, C.G., Ledesma, M.D.: High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann pick disease type a. Cell Death Differ. 21(6), 864–875 (2014). https://doi.org/10.1038/cdd.2014.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riboni, L., Viani, P., Bassi, R., Prinetti, A., Tettamanti, G.: The role of sphingolipids in the process of signal transduction. Prog. Lipid Res. 36(2–3), 153–195 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. Sonnino, S., Cantu, L., Corti, M., Acquotti, D., Venerando, B.: Aggregative properties of gangliosides in solution. Chem. Phys. Lipids. 71(1), 21–45 (1994)

    Article  CAS  PubMed  Google Scholar 

  28. Koynova, R., Caffrey, M.: Phases and phase transitions of the sphingolipids. Biochim. Biophys. Acta. 1255(3), 213–236 (1995)

    Article  PubMed  Google Scholar 

  29. Rueda, R., Tabsh, K., Ladisch, S.: Detection of complex gangliosides in human amniotic fluid. FEBS Lett. 328(1–2), 13–16 (1993)

    Article  CAS  PubMed  Google Scholar 

  30. Cotterchio, M., Seyfried, T.N.: Serum gangliosides in mice with metastatic and non-metastatic brain tumors. J. Lipid Res. 35(1), 10–14 (1994)

    CAS  PubMed  Google Scholar 

  31. Valentino, L.A., Ladisch, S.: Circulating tumor gangliosides enhance platelet activation. Blood. 83(10), 2872–2877 (1994)

    CAS  PubMed  Google Scholar 

  32. Kloppel, T.M., Keenan, T.W., Freeman, M.J., Morre, D.J.: Glycolipid-bound sialic acid in serum: increased levels in mice and humans bearing mammary carcinomas. Proc. Natl. Acad. Sci. U. S. A. 74(7), 3011–3013 (1977)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Young Jr., W.W., Borgman, C.A., Wolock, D.M.: Modes of shedding of glycosphingolipids from mouse lymphoma cells. J. Biol. Chem. 261(5), 2279–2283 (1986)

    CAS  PubMed  Google Scholar 

  34. Chigorno, V., Sciannamblo, M., Mikulak, J., Prinetti, A., Sonnino, S.: Efflux of sphingolipids metabolically labeled with [1-3H] sphingosine, L-[3-3H] serine and [9,10-3H] palmitic acid from normal cells in culture. Glycoconj. J. 23(3–4), 159–165 (2006). https://doi.org/10.1007/s10719-006-7921-7

    Article  CAS  PubMed  Google Scholar 

  35. Portoukalian, J., Zwingelstein, G., Abdul-Malak, N., Dore, J.F.: Alteration of gangliosides in plasma and red cells of humans bearing melanoma tumors. Biochem. Biophys. Res. Commun. 85(3), 916–920 (1978)

    Article  CAS  PubMed  Google Scholar 

  36. Olshefski, R., Ladisch, S.: Intercellular transfer of shed tumor cell gangliosides. FEBS Lett. 386(1), 11–14 (1996)

    Article  CAS  PubMed  Google Scholar 

  37. Li, R.X., Ladisch, S.: Shedding of human neuroblastoma gangliosides. Biochim. Biophys. Acta. 1083(1), 57–64 (1991)

    Article  CAS  PubMed  Google Scholar 

  38. Stephenson, J., Nutma, E., van der Valk, P., Amor, S.: Inflammation in CNS neurodegenerative diseases. Immunology 154(2), 204–219 (2018). https://doi.org/10.1111/imm.12922

  39. Ladisch, S., Li, R., Olson, E.: Ceramide structure predicts tumor ganglioside immunosuppressive activity. Proc. Natl. Acad. Sci. U. S. A. 91(5), 1974–1978 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grassi, S., Chiricozzi, E., Mauri, L., Sonnino, S., Prinetti, A.: Sphingolipids and neuronal degeneration in lysosomal storage disorders. J. Neurochem. (2018). https://doi.org/10.1111/jnc.14540

  41. Vitner, E.B., Platt, F.M., Futerman, A.H.: Common and uncommon pathogenic cascades in lysosomal storage diseases. J. Biol. Chem. 285(27), 20423–20427 (2010). R110.134452 [pii]). https://doi.org/10.1074/jbc.R110.134452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Levine, T.P., Patel, S.: Signalling at membrane contact sites: two membranes come together to handle second messengers. Curr. Opin. Cell Biol. 39, 77–83 (2016). https://doi.org/10.1016/j.ceb.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  43. Prinz, W.A.: Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J. Cell Biol. 205(6), 759–769 (2014). https://doi.org/10.1083/jcb.201401126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levine, T., Loewen, C.: Inter-organelle membrane contact sites: through a glass, darkly. Curr. Opin. Cell Biol. 18(4), 371–378 (2006). https://doi.org/10.1016/j.ceb.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  45. Gatta, A.T., Levine, T.P.: Piecing together the patchwork of contact sites. Trends Cell Biol. 27(3), 214–229 (2017). https://doi.org/10.1016/j.tcb.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  46. Jain, A., Holthuis, J.C.M.: Membrane contact sites, ancient and central hubs of cellular lipid logistics. Biochim. Biophys. Acta. 1864(9), 1450–1458 (2017). https://doi.org/10.1016/j.bbamcr.2017.05.017

    Article  CAS  Google Scholar 

  47. Matarrese, P., Garofalo, T., Manganelli, V., Gambardella, L., Marconi, M., Grasso, M., Tinari, A., Misasi, R., Malorni, W., Sorice, M.: Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy. 10(5), 750–765 (2014). https://doi.org/10.4161/auto.27959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sano, R., Annunziata, I., Patterson, A., Moshiach, S., Gomero, E., Opferman, J., Forte, M., d'Azzo, A.: GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to ca(2+)-dependent mitochondrial apoptosis. Mol. Cell. 36(3), 500–511 (2009). https://doi.org/10.1016/j.molcel.2009.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Massimo Aureli or Nicoletta Loberto.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aureli, M., Samarani, M., Loberto, N. et al. Neuronal membrane dynamics as fine regulator of sphingolipid composition. Glycoconj J 35, 397–402 (2018). https://doi.org/10.1007/s10719-018-9841-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-018-9841-8

Keywords

Navigation