Skip to main content

Advertisement

Log in

Conjugation of chitosan oligosaccharides via a carrier protein markedly improves immunogenicity of porcine circovirus vaccine

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Porcine circovirus type 2 (PCV2)-associated diseases have led to huge economic losses in pig industry. Our laboratory previously found that conjugation of chitosan oligosaccharides (COS) enhanced the immunogenicity of PCV2 vaccine against infectious pathogens. In this study, an effective adjuvant system was developed by covalent conjugation of COS via a carrier protein (Ovalbumin, OVA) to further increase the immunogenicity of vaccine. Its effect on dendritic cells maturation was assessed in vitro and its immunogenicity was investigated in mice. The results indicated that, as compared to the PCV2 and COS-PCV2, COS-OVA-PCV2 stimulated dendritic cells to express higher maturation markers (CD80, CD86, CD40 and MHC class II) and remarkably promoted both humoral and cellular immunity against PCV2 by enhancing the lymphocyte proliferation and inducing a mixed Th1/Th2 response, including the increased production of PCV2-specific antibodies and raised levels of inflammatory cytokines. Furthermore, it displayed better immune-stimulating effects than the physical mixture of vaccine and ISA206 (a commercialized adjuvant). In conclusion, conjugation of COS via a carrier protein might be a promising strategy to enhance the immunogenicity of vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang, S.L., Chang, C.L., Chiang, Y.M., Hsieh, R.H., Tzeng, C.R., Wu, T.K., Sytwu, H.K., Shyur, L.F., Yang, W.C.: A review of porcine circovirus 2-associated syndromes and diseases. Vet. J. 169(3), 326–336 (2005)

    Article  CAS  Google Scholar 

  2. Pablo, A., Jonathan, R., Barbara, W.: Cost of post-weaning multi-systemic wasting syndrome and porcine circovirus type-2 subclinical infection in England – an economic disease model. Prev. Vet. Med. 110(2), 88 (2013)

    Article  Google Scholar 

  3. Zhang, G., Jia, P., Cheng, G., Jiao, S., Ren, L., Ji, S., Hu, T., Liu, H., Du, Y.: Enhanced immune response to inactivated porcine circovirus type 2 (PCV2) vaccine by conjugation of chitosan oligosaccharides. Carbohydr. Polym. 166, 64 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, G., Cheng, G., Jia, P., Jiao, S., Feng, C., Hu, T., Liu, H., Du, Y.: The positive correlation of the enhanced immune response to PCV2 subunit vaccine by conjugation of chitosan oligosaccharide with the deacetylation degree. Marine Drugs. 15(8), 236 (2017)

    Article  PubMed Central  Google Scholar 

  5. Slütter, B., Soema, P.C., Ding, Z., Verheul, R., Hennink, W., Jiskoot, W.: Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen. J. Control. Release. 143(2), 207–214 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. Maurer, T., Heit, A., Hochrein, H., Ampenberger, F., O'Keeffe, M., Bauer, S., Lipford, G.B., Vabulas, R.M., Wagner, H.: CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. Eur. J. Immunol. 32(8), 2356–2364 (2015)

    Article  Google Scholar 

  7. Mellman, I., Coukos, G., Dranoff, G.: Cancer immunotherapy comes of age. Nat. Clin. Pract. Oncol. 2(3), 115 (2011)

    Google Scholar 

  8. Mancini, R.J., Tom, J.K., Esserkahn, A.P.: Covalently coupled immunostimulant heterodimers. Angew. Chem. Int. Ed. Eng. 53(1), 189–192 (2014)

    Article  CAS  Google Scholar 

  9. Huang, Q., Yu, W., Hu, T.: Potent antigen-adjuvant delivery system by conjugation of Mycobacterium tuberculosis Ag85B-HspX fusion protein with arabinogalactan-poly(I:C) conjugate. Bioconjug. Chem. 27(4), 1165 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. Wang, L., Feng, S., An, L., Gu, G., Guo, Z.: Synthetic and immunological studies of mycobacterial Lipoarabinomannan oligosaccharides and their protein conjugates. J. Organomet. Chem. 80(20), 10060–10075 (2015)

    Article  CAS  Google Scholar 

  11. Micoli, F., Romano, M.R., Tontini, M., Cappelletti, E., Gavini, M., Proietti, D., Rondini, S., Swennen, E., Santini, L., Filippini, S.: Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proc. Natl. Acad. Sci. U. S. A. 110(47), 19077 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Verez-Bencomo, V., Fernández-Santana, V., Hardy, E., Toledo, M.E., Rodríguez, M.C., Heynngnezz, L., Rodriguez, A., Baly, A., Herrera, L., Izquierdo, M.: A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science. 305(5683), 522 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Munro, C.A., Xin, H., Cartmell, J., Bailey, J.J., Dziadek, S., Bundle, D.R., Cutler, J.E.: Self-Adjuvanting Glycopeptide conjugate vaccine against disseminated candidiasis. PLoS One. 7(4), e35106 (2012). https://doi.org/10.1371/journal.pone.0035106

    Article  CAS  Google Scholar 

  14. Gause, K.T., Wheatley, A.K., Cui, J., Yan, Y., Kent, S.J., Caruso, F.: Immunological principles guiding the rational Design of Particles for vaccine delivery. ACS Nano. 11(1), 54 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. Yue, H., Wei, W., Yue, Z., Lv, P., Wang, L., Maaa, G.: Particle size affects the cellular response in macrophages. Eur. J. Pharm. Sci. 41(5), 650 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. Tontini, M., Berti, F., Romano, M.R., Proietti, D., Zambonelli, C., Bottomley, M.J., De, G.E., Del, G.G., Rappuoli, R., Costantino, P.: Comparison of CRM197, diphtheria toxoid and tetanus toxoid as protein carriers for meningococcal glycoconjugate vaccines. Vaccine. 31(42), 4827–4833 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Mwirigi, M., Nkando, I., Olum, M., Attahpoku, S., Ochanda, H., Berberov, E., Potter, A., Gerdts, V., Perezcasal, J., Wesonga, H.: Capsular polysaccharide from mycoplasma mycoides subsp. mycoides shows potential for protection against contagious bovine pleuropneumonia. Vet. Immunol. Immunopathol. 178, 64 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. Xu, M., Xing, X., Wu, Z., Du, Y., Hu, T.: Molecular shape and immunogenicity of meningococcal polysaccharide group a conjugate vaccine. Vaccine. 33(43), 5815–5821 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Stefanetti, G., Rondini, S., Lanzilao, L., Saul, A., Maclennan, C.A., Micoli, F.: Impact of conjugation chemistry on the immunogenicity of S. Typhimurium conjugate vaccines. Vaccine. 32(46), 6122 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Qiao, W., Ji, S., Zhao, Y., Hu, T.: Conjugation of β-glucan markedly increase the immunogencity of meningococcal group Y polysaccharide conjugate vaccine. Vaccine. 33(17), 2066 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. Wan, X., Zhang, J., Yu, W., Shen, L., Ji, S., Hu, T.: Effect of protein immunogenicity and PEG size and branching on the anti-PEG immune response to PEGylated proteins. Process Biochem. 52, 183–191 (2017)

    Article  CAS  Google Scholar 

  22. Hu, T., Li, D., Wang, J., Wang, Q., Liang, Y., Su, Y., Ma, G., Su, Z., Wang, S.: Propylbenzmethylation at Val-1(α) markedly increases the tetramer stability of the PEGylated hemoglobin: a comparison with propylation at Val-1(α). Biochim. Biophys. Acta. 1820(12), 2044 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Donadei, A., Balocchi, C., Mancini, F., Proietti, D., Gallorini, S., O'Hagan, D.T., D'Oro, U., Berti, F., Baudner, B.C., Adamo, R.: The adjuvant effect of TLR7 agonist conjugated to a meningococcal serogroup C glycoconjugate vaccine. Eur. J. Pharm. Biopharm. 107, 110 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. Gindy, M.E., Ji, S., Hoye, T.R., Panagiotopoulos, A.Z., Prud’Homme, R.K.: Preparation of poly(ethylene glycol) protected nanoparticles with variable bioconjugate ligand density. Biomacromolecules. 9(10), 2705–2711 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Gómezlaguna, J., Salguero, F.J., Pallarés, F.J., Fernández, D.M.M., Barranco, I., Cerón, J.J., Martínezsubiela, S., Van, R.K., Carrasco, L.: Acute phase response in porcine reproductive and respiratory syndrome virus infection. Comp. Immunol. Microbiol. Infect. Dis. 33(6), e51 (2010)

    Article  Google Scholar 

  26. Petrovsky, N.: Comparative safety of vaccine adjuvants: a summary of current evidence and future needs. Drug Saf. 38(11), 1059 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh, M., O'Hagan, D.: Advances in vaccine adjuvants. Nat. Biotechnol. 17(11), 1075 (1999)

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X., Zhang, H., Gao, Y., Zhang, Y., Wu, H., Zhang, Y.: Efficacy of chitosan oligosaccharide as aquatic adjuvant administrated with a formalin-inactivated Vibrio anguillarum vaccine. Fish Shellfish Immunol. 47(2), 855–860 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. Yeh, M.Y., Wu, M.F., Shang, H.S., Chang, J.B., Shih, Y.L., Chen, Y.L., Hung, H.F., Lu, H.F., Yeh, C., Wood, W.G.: Effects of chitosan on xenograft models of melanoma in C57BL/6 mice and hepatoma formation in SCID mice. Anticancer Res. 33(11), 4867 (2013)

    CAS  PubMed  Google Scholar 

  30. Dang, Y., Li, S., Wang, W., Wang, S., Zou, M., Guo, Y., Fan, J., Du, Y., Zhang, J.: The effects of chitosan oligosaccharide on the activation of murine spleen CD11c + dendritic cells via toll-like receptor 4. Carbohydr. Polym. 83(3), 1075–1081 (2011)

    Article  CAS  Google Scholar 

  31. Jeong, E.J., Maeng, H.J., Lee, H.J., Kim, Y., Kim, C.K.: Effect of adjuvant on pharmacokinetics, organ distribution and humoral immunity of hepatitis b surface antigen after intramuscular injection to rats. Arch. Pharm. Res. 35(9), 1621–1628 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Santini, S.M., Di Pucchio, T., Lapenta, C., Parlato, S., Logozzi, M., Belardelli, F.: The natural alliance between type I interferon and dendritic cells and its role in linking innate and adaptive immunity. J. Interf. Cytokine Res. 22(11), 1071–1080 (2002)

    Article  CAS  Google Scholar 

  33. Rossi, M., Young, J.W.: Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J. Immunol. 175(3), 1373–1381 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., Palucka, K.: Immunobiology of dendritic cells. Annu. Rev. Immunol. 18(1), 767–811 (1999)

    Article  Google Scholar 

  35. Jin, J.O., Zhang, W., Du, J.Y., Yu, Q.: Correction for Jin et al., BDCA1-positive dendritic cells (DCs) represent a unique human myeloid DC subset that induces innate and adaptive immune responses to Staphylococcus aureus infection. Infect. Immun. 83(2), 849 (2015)

    Article  CAS  PubMed Central  Google Scholar 

  36. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F., Lanzavecchia, A.: Selected toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6(8), 769–776 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Flach, T.L., Ng, G., Hari, A., Desrosiers, M.D., Zhang, P., Ward, S.M., Seamone, M.E., Vilaysane, A., Mucsi, A.D., Yin, F.: Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 17(4), 479 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. Ismaili, J., Rennesson, J., Aksoy, E., Vekemans, J., Vincart, B., Amraoui, Z., Van, L.F., Goldman, M., Dubois, P.M.: Monophosphoryl lipid a activates both human dendritic cells and T cells. J. Immunol. 168(2), 926 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. Porporatto, C., Bianco, I.D., Correa, S.G.: Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. J. Leukoc. Biol. 78(1), 62 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. Fu, Y., Wang, T., Xiu, L., Shi, X., Bian, Z., Zhang, Y., Ruhan, A., Wang, X.: Levamisole promotes murine bone marrow derived dendritic cell activation and drives Th1 immune response in vitro and in vivo. Int. Immunopharmacol. 31, 57–65 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the support by the National Key Research and Development Program of China (2017YFD0502303), and by National Natural Science Fund, China (NO. 31500747, NO. 31570801 and NO. U160820020).

Contributors

Yuguang Du and Tao Hu designed the study. Guiqiang Zhang and Peiyuan Jia were responsible for the acquisition of data. Hongtao Liu and Guiqiang Zhang interpreted the experimental data. Guiqiang Zhang and Hongtao Liu were the major contributors in drafting and revising the manuscript. Hongtao Liu was final approval of the version to be submitted. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongtao Liu, Tao Hu or Yuguang Du.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article contains animal studies, and all animal experiment procedures were approved by the Animal Ethical Experimentation Committee of Institute of Process Engineering, Chinese Academy of Sciences (Beijing, China).

Additional information

Highlight

A conjugate was prepared by coupling COS via OVA to PCV2 vaccine.

It markedly promoted DCs maturation, up-regulating expression of surface markers.

It displayed higher immunogenicity compared to that mixing with ISA206.

Electronic supplementary material

ESM 1

(PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Jia, P., Liu, H. et al. Conjugation of chitosan oligosaccharides via a carrier protein markedly improves immunogenicity of porcine circovirus vaccine. Glycoconj J 35, 451–459 (2018). https://doi.org/10.1007/s10719-018-9830-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-018-9830-y

Keywords

Navigation