Skip to main content

Advertisement

Log in

MPDU1 regulates CEACAM1 and cell adhesion in vitro and in vivo

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

N-linked glycosylation (NLG) is a co-translational modification that is essential for the folding, stability, and trafficking of transmembrane (TM) and secretory glycoproteins. Efficient NLG requires the stepwise synthesis and en bloc transfer of a 14-sugar carbohydrate known as a lipid-linked oligosaccharide (LLO). The genetics of LLO biosynthesis have been established in yeast and Chinese hamster systems, but human models of LLO biosynthesis are lacking. In this study we report that Kato III human gastric cancer cells represent a model of deficient LLO synthesis, possessing a homozygous deletion of the LLO biosynthesis factor, MPDU1. Kato III cells lacking MPDU1 have all the hallmarks of a glycosylation-deficient cell line, including altered sensitivity to lectins and the formation of truncated LLOs. Analysis of transcription using an expression microarray and protein levels using a proteome antibody array reveal changes in the expression of several membrane proteins, including the metalloprotease ADAM-15 and the cell adhesion molecule CEACAM1. Surprisingly, the restoration of MPDU1 expression in Kato III cells demonstrated a clear phenotype of increased cell-cell adhesion, a finding that was confirmed in vivo through analysis of tumor xenografts. These experiments also confirmed that protein levels of CEACAM-1, which functions in cell adhesion, is dependent on LLO biosynthesis in vivo. Kato III cells and the MPDU1-rescued Kato IIIM cells therefore provide a novel model to examine the consequences of defective LLO biosynthesis both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LLO :

Lipid-linked oligosaccharide

NLG :

N-linked glycosylation

ER :

Endoplasmic reticulum

CHO :

Chinese hamster ovary

CDG :

Congenital disorder of glycosylation

MPDU :

Mannose-P-dolichol utilization

Man :

Mannose

GlcNac :

N-acetylglucosamine

FACE :

Fluorophore-assisted carbohydrate electrophoresis

CNV :

Copy number variation

H&E :

Hematoxylin and eosin

PBS :

Phosphate-buffered sailne

References

  1. Anand, M., Rush, J.S., Ray, S., Doucey, M.A., Weik, J., Ware, F.E., Hofsteenge, J., Waechter, C.J., Lehrman, M.A.: Requirement of the Lec35 gene for all known classes of monosaccharide-P-dolichol-dependent glycosyltransferase reactions in mammals. Mol. Biol. Cell. 12, 487–501 (2001)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Baranov, V., Hammarstrom, S.: Carcinoembryonic antigen (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1), apically expressed on human colonic M cells, are potential receptors for microbial adhesion. Histochem. Cell Biol. 121, 83–89 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. Benchimol, S., Fuks, A., Jothy, S., Beauchemin, N., Shirota, K., Stanners, C.P.: Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell. 57, 327–334 (1989)

    Article  PubMed  CAS  Google Scholar 

  4. Cazet, A., Charest, J., Bennett, D.C., Sambrooks, C.L., Contessa, J.N.: Mannose phosphate isomerase regulates fibroblast growth factor receptor family signaling and glioma radiosensitivity. PLoS One. 9, e110345 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chapman, A., Fujimoto, K., Kornfeld, S.: The primary glycosylation defect in class E Thy-1-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J. Biol. Chem. 255, 4441–4446 (1980)

    PubMed  CAS  Google Scholar 

  6. Chorny, A., Cerutti, A.: CEACAM1-S: the virtues of alternative splicing in gut immunity. Immunity. 37, 768–770 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cline, A., Gao, N., Flanagan-Steet, H., Sharma, V., Rosa, S., Sonon, R., Azadi, P., Sadler, K.C., Freeze, H.H., Lehrman, M.A., et al.: A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency. Mol. Biol. Cell. 23, 4175–4187 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Contessa, J.N., Bhojani, M.S., Freeze, H.H., Rehemtulla, A., Lawrence, T.S.: Inhibition of N-linked glycosylation disrupts receptor tyrosine kinase signaling in tumor cells. Cancer Res. 68, 3803–3809 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Contessa, J.N., Bhojani, M.S., Freeze, H.H., Ross, B.D., Rehemtulla, A., Lawrence, T.S.: Molecular imaging of N-linked glycosylation suggests glycan biosynthesis is a novel target for cancer therapy. Clin. Cancer Res. Off J Am Assoc Cancer Res. 16, 3205–3214 (2010)

    Article  CAS  Google Scholar 

  10. Gao, N., Lehrman, M.A.: Analyses of dolichol pyrophosphate-linked oligosaccharides in cell cultures and tissues by fluorophore-assisted carbohydrate electrophoresis. Glycobiology. 12, 353–360 (2002)

    Article  PubMed  CAS  Google Scholar 

  11. Haga, Y., Ishii, K., Suzuki, T.: N-glycosylation is critical for the stability and intracellular trafficking of glucose transporter GLUT4. J. Biol. Chem. 286, 31320–31327 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hori, H., Elbein, A.D.: Characterization of the oligosaccharides from lipid-linked oligosaccharides of mung bean seedlings. Plant Physiol. 70, 12–20 (1982)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Huang, P., Chen, C., Mague, S.D., Blendy, J.A., Liu-Chen, L.Y.: A common single nucleotide polymorphism A118G of the mu opioid receptor alters its N-glycosylation and protein stability. Biochem. J. 441, 379–386 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jones, M.B., Tomiya, N., Betenbaugh, M.J., Krag, S.S.: Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells. Biochem. Biophys. Res. Commun. 395, 36–41 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Karam, R., Carvalho, J., Bruno, I., Graziadio, C., Senz, J., Huntsman, D., Carneiro, F., Seruca, R., Wilkinson, M.F., Oliveira, C.: The NMD mRNA surveillance pathway downregulates aberrant E-cadherin transcripts in gastric cancer cells and in CDH1 mutation carriers. Oncogene. 27, 4255–4260 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. Kranz, C., Denecke, J., Lehrman, M.A., Ray, S., Kienz, P., Kreissel, G., Sagi, D., Peter-Katalinic, J., Freeze, H.H., Schmid, T., Jackowski-Dohrmann, S., Harms, E., Marquardt, T.: A mutation in the human MPDU1 gene causes congenital disorder of glycosylation type If (CDG-If). J. Clin. Invest. 108, 1613–1619 (2001)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lehrman, M.A., Zeng, Y.: Pleiotropic resistance to glycoprotein processing inhibitors in Chinese hamster ovary cells. The role of a novel mutation in the asparagine-linked glycosylation pathway. J. Biol. Chem. 264, 1584–1593 (1989)

    PubMed  CAS  Google Scholar 

  18. Liem, Y.S., Bode, L., Freeze, H.H., Leebeek, F.W., Zandbergen, A.A., Paul, W.J.: Using heparin therapy to reverse protein-losing enteropathy in a patient with CDG-Ib. Nat. Clin. Pract. Gastroenterol. Hepatol. 5, 220–224 (2008)

    Article  PubMed  Google Scholar 

  19. Lucka, L., Fernando, M., Grunow, D., Kannicht, C., Horst, A.K., Nollau, P., Wagener, C.: Identification of Lewis x structures of the cell adhesion molecule CEACAM1 from human granulocytes. Glycobiology. 15, 87–100 (2005)

    Article  PubMed  CAS  Google Scholar 

  20. Maeda, Y., Tomita, S., Watanabe, R., Ohishi, K., Kinoshita, T.: DPM2 regulates biosynthesis of dolichol phosphate-mannose in mammalian cells: correct subcellular localization and stabilization of DPM1, and binding of dolichol phosphate. EMBO J. 17, 4920–4929 (1998)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Obrink, B.: CEA adhesion molecules: multifunctional proteins with signal-regulatory properties. Curr. Opin. Cell Biol. 9, 616–626 (1997)

    Article  PubMed  CAS  Google Scholar 

  22. Patnaik, S.K., Stanley, P.: Lectin-resistant CHO glycosylation mutants. Methods Enzymol. 416, 159–182 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. Rush, J.S., Panneerselvam, K., Waechter, C.J., Freeze, H.H.: Mannose supplementation corrects GDP-mannose deficiency in cultured fibroblasts from some patients with Congenital Disorders of Glycosylation (CDG). Glycobiology. 10, 829–835 (2000)

    Article  PubMed  CAS  Google Scholar 

  24. Schenk, B., Imbach, T., Frank, C.G., Grubenmann, C.E., Raymond, G.V., Hurvitz, H., Korn-Lubetzki, I., Revel-Vik, S., Raas-Rotschild, A., Luder, A.S., et al.: MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J. Clin. Invest. 108, 1687–1695 (2001)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sekiguchi, M., Sakakibara, K., Fujii, G.: Establishment of cultured cell lines derived from a human gastric carcinoma. Jpn J Exp Med. 48, 61–68 (1978)

    PubMed  CAS  Google Scholar 

  26. Stoll, J., Rosenwald, A.G., Krag, S.S.: A Chinese hamster ovary cell mutant F2A8 utilizes polyprenol rather than dolichol for its lipid-dependent asparagine-linked glycosylation reactions. J. Biol. Chem. 263, 10774–10782 (1988)

    PubMed  CAS  Google Scholar 

  27. Sun, L., Eklund, E.A., Van Hove, J.L., Freeze, H.H., Thomas, J.A.: Clinical and molecular characterization of the first adult congenital disorder of glycosylation (CDG) type Ic patient. Am. J. Med. Genet. A. 137, 22–26 (2005)

    Article  PubMed  Google Scholar 

  28. Ware, F.E., Lehrman, M.A.: Expression cloning of a novel suppressor of the Lec15 and Lec35 glycosylation mutations of Chinese hamster ovary cells. J. Biol. Chem. 271, 13935–13938 (1996)

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Institutes of Health (5RO1CA172391) and the National Research Service Award (postdoctoral training grant #T32CA009259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph N. Contessa.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, D.C., Cazet, A., Charest, J. et al. MPDU1 regulates CEACAM1 and cell adhesion in vitro and in vivo. Glycoconj J 35, 265–274 (2018). https://doi.org/10.1007/s10719-018-9819-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-018-9819-6

Keywords

Navigation