Glycoconjugate Journal

, Volume 35, Issue 2, pp 161–163 | Cite as

On the use of cholera toxin

  • Elena Chiricozzi
  • Laura Mauri
  • Maria Grazia Ciampa
  • Alessandro Prinetti
  • Sandro Sonnino
Short Communication

Studies in the early 1970s revealed that the first step in cholera infection is represented by the interaction between the Vibrio cholerae exotoxin (Cholera Toxin, CT,) and the mucosal surface [1]. CT consists of a single catalytically active component A and a nontoxic pentamer of identical B subunits (B5).

Using in vitro approaches, the surface receptor was identified as the oligosaccharide β-Gal-(1–3)-β-GalNAc-(1–4)-[α-Neu5Ac-(2–3)-]β-Gal-(1–4)-β-Glc-, i.e., the ganglioside GM1 oligosaccharide [2]. Following studies established an association constant with CT in the range of 10−7 - 10−12 M, depending on the procedure used, and that the subunit A or the ganglioside ceramide moiety are not necessary for the association.

Then, CT derivatives and anti-CT antibodies for analytical immunostaining were rapidly developed for analytical purposes. Today immune-absorbent-, ELISA- and TLC- procedures, are available for detection and quantitation of the ganglioside GM1 through CT binding. In...


Cholera toxin GM1 Glycolipids Glycoconjugates Immunostaining 


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Sixma, T.K., Kalk, K.H., van Zanten, B.A.M., Dauter, Z., Kingma, J., Witholt, B., Hol, W.G.J.: Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J. Mol. Biol. 230(3), 890–918 (1993)CrossRefPubMedGoogle Scholar
  2. 2.
    Holmgren, J., Lonnroth, I., Svennerholm, L.: Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. Infect. Immun. 8(2), 208–214 (1973)PubMedPubMedCentralGoogle Scholar
  3. 3.
    Wu, G.S., Ledeen, R.: Quantification of gangliotetraose gangliosides with cholera toxin. Anal. Biochem. 173(2), 368–375 (1988)CrossRefPubMedGoogle Scholar
  4. 4.
    Cambron, L.D., Leskawa, K.C.: A sensitive method to quantitate gangliosides of the gangliotetraose series directly on chromatograms using peroxidase conjugated cholera toxin. Stain. Technol. 65(6), 293–297 (1990)CrossRefPubMedGoogle Scholar
  5. 5.
    Davidsson, P., Fredman, P., Svennerholm, L.: Gangliosides and sulphatide in human cerebrospinal fluid: quantitation with immunoaffinity techniques. J. Chromatogr. 496(2), 279–289 (1989)CrossRefPubMedGoogle Scholar
  6. 6.
    Hansson, H.A., Holmgren, J., Svennerholm, L.: Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin. Proc. Natl. Acad. Sci. U. S. A. 74(9), 3782–3786 (1977)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Angström, J., Teneberg, S., Karlsson, K.A.: Delineation and comparison of ganglioside-binding epitopes for the toxins of Vibrio cholerae, Escherichia coli, and Clostridium tetani: evidence for overlapping epitopes. Proc. Natl. Acad. Sci. U. S. A. 91, 11859–11863 (1994)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kuziemko, G.M., Stroh, M., Stevens, R.C.: Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry. 35, 6375–6384 (1996)CrossRefPubMedGoogle Scholar
  9. 9.
    Lauer, S., Goldstein, B., Nolan, R.L., Nolan, J.P.: Analysis of cholera toxin-ganglioside interactions by flow cytometry. Biochem. 41, 1742–1751 (2002)CrossRefGoogle Scholar
  10. 10.
    Mac Kenzie, C.R., Hirama, T., Lee, K.K., Altman, E., Young, N.M.: Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. J. Biol. Chem. 272, 5533–5538 (1997)CrossRefGoogle Scholar
  11. 11.
    Masserini, M., Freire, E., Palestini, P., Calappi, E., Tettamanti, G.: Fuc-GM1 ganglioside mimics the receptor function of GM1 for cholera toxin. Biochemistry. 31(8), 2422–2426 (1992)CrossRefPubMedGoogle Scholar
  12. 12.
    Yuki, N., Handa, S., Tai, T., Takahashi, M., Saito, K., Tsujino, Y., Taki, T.: Ganglioside-like epitopes of lipopolysaccharides from Campylobacter jejuni (PEN 19) in three isolates from patients with Guillain-Barré syndrome. J. Neurol. Sci. 130, 112–116 (1995)CrossRefPubMedGoogle Scholar
  13. 13.
    Phongsisay, V., Iizasa, E., Hara, H., Yoshida, H.: Evidence for TLR4 and FcRγ-CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors. Mol. Immunol. 66, 463–471 (2015)CrossRefPubMedGoogle Scholar
  14. 14.
    Wands, A.M., Fujita, A., McCombs, J.E., Cervin, J., Dedic, B., Rodriguez, A.C., Nischan, N., Bond, M.R., Mettlen, M., Trudgian, D.C., Lemoff, A., Quiding-Järbrink, M., Gustavsson, B., Steentoft, C., Clausen, H., Mirzaei, H., Teneberg, S., Yrlid, U., Kohler, J.J.: Fucosylation and protein glycosylation create functional receptors for cholera toxin. elife. 4, e09545 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cervin, J., Wands, A.M., Casselbrant, A., Wu, H., Krishnamurthy, S., Cvjetkovic, A., Estelius, J., Dedic, B., Sethi, A., Wallom, K.L., Riise, R., Bäckström, M., Wallenius, V., Platt, F.M., Lebens, M., Teneberg, S., Fändriks, L., Kohler, J.J., Yrlid, U.: GM1 ganglioside-independent intoxication by cholera toxin. PLoS Pathog. 14, e1006862 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yanagisawa, M., Arigha, T., Yu, R.K.: Fucosyl-GM1 expression and amyloid-β protein accumulation in PC12 cells. J. Neurosci. Res. 84, 1343–1349 (2006)CrossRefPubMedGoogle Scholar
  17. 17.
    Prinetti, A., Chigorno, V., Tettamanti, G., Sonnino, S.: Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture: a compositional study. J. Biol. Chem. 275, 11658–11665 (2000)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly

Personalised recommendations