Glycoconjugate Journal

, Volume 33, Issue 6, pp 877–886 | Cite as

Sustained mitogenic effect on K562 human chronic myelogenous leukemia cells by dietary lectin, jacalin

  • V. Lavanya
  • Neesar Ahmed
  • Md Khurshid Alam Khan
  • Shazia Jamal
Short Communication


Dietary lectins have been shown to affect the proliferation of human cancer cell lines. The anti-proliferative effects of lectins from varied sources have been extensively studied and in some cases, the underlying mechanism has been explored. Except for peanut agglutinin (PNA), the mitogenic effects of no other lectins have been studied in detail. In the present study, we have shown that jacalin, lectin purified from jackfruit (Artocarpus integrifolia) seeds act as a mitogen for K562, the Bcr-Abl expressing erythroleukemia cell line (K562) and the effect was found to be dose dependent. K562 cells remained in the proliferative state for a longer period even after the withdrawal of jacalin stimulation, thus jacalin was found to induce sustained mitogenic effect on K562 cells. Further, conditioned media from K562 cells treated with jacalin were observed to have the similar mitogenic effect even in the presence of galactose. Importantly, galactose which is a known ligand for jacalin will interact with functionally active jacalin present in the conditioned media and neutralise its effect. In addition, jacalin treatment also resulted in increased mRNA expression levels of pro-inflammatory cytokines including IL-1β, IL-6 and IFN-γ. Our results indicate that jacalin induces secretion of soluble molecules, which maybe responsible for this observed increased proliferation of K562 cells.


Lectins Jacalin Cell proliferation K562 erythroleukemia cells Thomsen-Friendenreich disaccharide Pro inflammatory cytokines 



The authors thank Prof. JAK Tareen for setting up the School of Life Sciences at BSAU, Prof. S. Hemalatha for her constant support and Ms.M.K. Saranya for technical assistance. L.V. is recipient of a junior research fellowship from B. S. Abdur Rahman University, K.A.K, N.A. and S.J. are Assistant Professors (Senior Grade) at School of Life Sciences, B. S. Abdur Rahman University. Financial assistance was provided by B. S. Abdur Rahman University.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10719_2016_9725_MOESM1_ESM.pdf (26 kb)
ESM 1 (PDF 26 kb)
10719_2016_9725_MOESM2_ESM.pdf (94 kb)
ESM 2 (PDF 94 kb)


  1. 1.
    Sharon N.: Lectins: from obscurity into the limelight. Protein Sci. 7, 2042–2048 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lis H., Sharon N.: Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 98, 637–674 (1998)CrossRefPubMedGoogle Scholar
  3. 3.
    Pusztai A.: Plant Lectins, Chemistry and Pharmacology of Natural Products Series. Cambridge University Press, Cambridge (1991)Google Scholar
  4. 4.
    Wang Q., Yu L.G., Campbell B.J., Milton J.D., Rhodes J.M.: Identification of intact peanut lectin in peripheral venous blood. Lancet. 352, 1831–1832 (1998)CrossRefPubMedGoogle Scholar
  5. 5.
    Brady P.G., Vannier A.M., Banwell J.G.: Identification of the dietary lectin, wheat germ agglutinin, in human intestinal contents. Gastroenterology. 75, 236–239 (1978)PubMedGoogle Scholar
  6. 6.
    Ryder S.D., Smith J.A., Rhodes J.M.: Peanut lectin: a mitogen for normal human colonic epithelium and human HT29 colorectal cancer cells. J. Natl. Cancer Inst. 84, 1410–1416 (1992)CrossRefPubMedGoogle Scholar
  7. 7.
    Ryder S.D., Parker N., Ecclestone D., Haqqani M.T., Rhodes J.M.: Peanut lectin stimulates proliferation in colonic explants from patients with inflammatory bowel disease and colon polyps. Gastroenterology. 106, 117–124 (1994)CrossRefPubMedGoogle Scholar
  8. 8.
    Singh R., Subramanian S., Rhodes J.M., Campbell B.J.: Peanut lectin stimulates proliferation of colon cancer cells by interaction with glycosylated CD44v6 isoforms and consequential activation of c-Met and MAPK: functional implications for disease-associated glycosylation changes. Glycobiology. 16, 594–601 (2006)CrossRefPubMedGoogle Scholar
  9. 9.
    Yu L.G., Milton J.D., Fernig D.G., Rhodes J.M.: Opposite effects on human colon cancer cell proliferation of two dietary Thomsen-Friedenreich antigen-binding lectins. J. Cell. Physiol. 186, 282–287 (2001)CrossRefPubMedGoogle Scholar
  10. 10.
    Yu L., Fernig D.G., Smith J.A., Milton J.D., Rhodes J.M.: Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res. 53, 4627–4632 (1993)PubMedGoogle Scholar
  11. 11.
    Ryder S.D., Jacyna M.R., Levi A.J., Rizzi P.M., Rhodes J.M.: Peanut ingestion increases rectal proliferation in individuals with mucosal expression of peanut lectin receptor. Gastroenterology. 114, 44–49 (1998)CrossRefPubMedGoogle Scholar
  12. 12.
    Ryder S.D., Smith J.A., Rhodes E.G., Parker N., Rhodes J.M.: Proliferative responses of HT29 and Caco2 human colorectal cancer cells to a panel of lectins. Gastroenterology. 106, 85–93 (1994)CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao Q., Duckworth C.A., Wang W., Guo X., Barrow H., Pritchard D.M., Rhodes J.M., Yu L.G.: Peanut agglutinin appearance in the blood circulation after peanut ingestion mimics the action of endogenous galectin-3 to promote metastasis by interaction with cancer-associated MUC1. Carcinogenesis. 35, 2815–2821 (2014)CrossRefPubMedGoogle Scholar
  14. 14.
    Valentiner U., Fabian S., Schumacher U., Leathem A.J.: The influence of dietary lectins on the cell proliferation of human breast cancer cell lines in vitro. Anticancer Res. 23, 1197–1206 (2003)PubMedGoogle Scholar
  15. 15.
    Pineau N., Aucouturier P., Brugier J.C., Preud’homme J.L.: Jacalin: a lectin mitogenic for human CD4 T lymphocytes. Clin. Exp. Immunol. 80, 420–425 (1990)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Blasco E., Barra A., Nicolas M., Lecron J.C., Wijdenes J., Preud’homme J.L.: Proliferative response of human CD4+ T lymphocytes stimulated by the lectin jacalin. Eur. J. Immunol. 25, 2010–2018 (1995)CrossRefPubMedGoogle Scholar
  17. 17.
    Tamma S.M., Kalyanaraman V.S., Pahwa S., Dominguez P., Modesto R.R.: The lectin jacalin induces phosphorylation of ERK and JNK in CD4+ T cells. J. Leukoc. Biol. 73, 682–688 (2003)CrossRefPubMedGoogle Scholar
  18. 18.
    Lafont V., Dornand J., Covassin L., Liautard J.P., Favero J.: The lectin jacalin triggers CD4-mediated lymphocyte signaling by binding CD4 through a protein-protein interaction. J. Leukoc. Biol. 59, 691–696 (1996)PubMedGoogle Scholar
  19. 19.
    Yu L.G., Andrews N., Weldon M., Gerasimenko O.V., Campbell B.J., Singh R., Grierson I., Petersen O.H., Rhodes J.M.: An Nterminal truncated form of Orp150 is a cytoplasmic ligand for the anti-proliferative mushroom Agaricus bisporus lectin and is required for nuclear localization sequence-dependent nuclearprotein import. J. Biol. Chem. 277, 24538–24545 (2002)CrossRefPubMedGoogle Scholar
  20. 20.
    Sahasrabuddhe A.A., Ahmed N., Krishnasastry M.V.: Stress induced phosphorylation of caveolin-1 and p38, and downregulation of EGFr and ERK by the dietary lectin jacalin in two human carcinoma cell lines. Cell Stress Chaperones. 11, 135–147 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yu L.G., Fernig D.G., White M.R., Spiller D.G., Appleton P., Evans R.C., Grierson I., Smith J.A., Davies H., Gerasimenko O.V., Petersen O.H., Milton J.D., Rhodes J.M.: Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks nuclear localization sequence-dependent nuclear protein import. J. Biol. Chem. 274, 4890–4899 (1999)CrossRefPubMedGoogle Scholar
  22. 22.
    Steelman L.S., Pohnert S.C., Shelton J.G., Franklin R.A., Bertrand F.E., McCubrey J.A.: JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 18, 189–218 (2004)CrossRefPubMedGoogle Scholar
  23. 23.
    Bedi A., Zehnbauer B.A., Barber J.P., Jones R.J.: Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood. 83, 2038–2044 (1994)PubMedGoogle Scholar
  24. 24.
    Cortez D., Kadlec L., Pendergast A.M.: Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol. Cell. Biol. 15, 5531–5541 (1995)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Amarante-Mendes G.P., Naekyung Kim C., Liu L., Huang Y., Perkins C.L., Green D.R., Bhalla K.: Bcr-Abl exerts its antiapoptotic, effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood. 91, 1700–1705 (1998)PubMedGoogle Scholar
  26. 26.
    Gordon M.Y., Dowding C.R., Riley G.P., Goldman J.M., Greaves M.F., et al.: Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature. 328, 342–344 (1987)CrossRefPubMedGoogle Scholar
  27. 27.
    Chen Y., Peng C., Sullivan C., Li D., Li S.: Critical molecular pathways in cancer stem cells of chronic myeloid leukemia. Leukemia. 24, 1545–1554 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Agrawal B.B., Goldstein I.J.: Physical and chemical characterization of concanavalin A, the hemagglutinin from jack bean (Canavalia ensiformis). Biochim. Biophys. Acta. 133, 376–379 (1967)CrossRefPubMedGoogle Scholar
  29. 29.
    Sastry M.V., Surolia A.: Intrinsic fluorescence studies on saccharide binding to Artocarpus integrifolia lectin. Biosci. Rep. 6, 853–860 (1986)CrossRefPubMedGoogle Scholar
  30. 30.
    Sastry M.V., Banarjee P., Patanjali S.R., Swamy M.J., Swarnalatha G.V., Surolia A.: Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (β-D-Gal(1—3)D-GalNAc). J. Biol. Chem. 261, 11726–11733 (1986)PubMedGoogle Scholar
  31. 31.
    Faheina-Martins G.V., da Silveira A.L., Ramos M.V., Marques-Santos L.F., Araujo D.A.: Influence of fetal bovine serum on cytotoxic and genotoxic effects of lectins in MCF-7 cells. J. Biochem. Mol. Toxicol. 25, 290–296 (2011)CrossRefPubMedGoogle Scholar
  32. 32.
    Camby I., Janssen T., De Decker R., Petein M., Raviv G., Pasteels J.L., Kiss R., Danguy A.: Lectin-induced alterations on the proliferation of three human prostatic cancer cell lines. In Vitro Cell Dev. Biol. 32, 633–639 (1996)CrossRefGoogle Scholar
  33. 33.
    Mosmann T.: Rapid colorimetric assay for cellular growth and survival; application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63 (1983)CrossRefPubMedGoogle Scholar
  34. 34.
    Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25, 402–408 (2001)CrossRefPubMedGoogle Scholar
  35. 35.
    Wolf M.F., Ludwig A., Fritz P., Schumacher K.: Increased expression of Thomsen-Friedenreich antigens during tumor progression in breast cancer patients. Tumour Biol. l9, 190–194 (1988)CrossRefGoogle Scholar
  36. 36.
    Campbell B.J., Finnie I.A., Hounsell E.F., Rhodes J.M.: Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin. J. Clin. Invest. 95, 571–576 (1995)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Inamdar S.R., Savanur M.A., Eligar S.M., Chachadi V.B., Nagre N.N., Chen C., Barclaays M., Ingle A., Mahajan P., Borges A., Shastry P., Kalraiya R.D., Swamy B.M., Rhodes J.M., Yu L.G.: The TF-antigen binding lectin from Sclerotiumrolfsii inhibits growth of human colon cancer cells by inducing apoptosis in vitro and suppresses tumor growth in vivo. Glycobiology. 22, 1227–1235 (2012)CrossRefPubMedGoogle Scholar
  38. 38.
    Yagi M., Campos-Neto A., Gollahon K.: Morphological and biochemical changes in a hematopoietic cell line induced by jacalin, a lectin derived from Artocarpus integrifolia. Biochem. Biophys. Res. Commun. 209, 263–270 (1995)CrossRefPubMedGoogle Scholar
  39. 39.
    Fadeev R.S., Solovieva M.E., Slyadovskiy D.A., Zkharov S.J., Fadeeva I.S., Senotov A.S., Dolgikh N.V., Golenkov A.K., Akatov V.S.: Cell aggregation increases drug resistance of acute myeloid leukemia cells. Biol. Membr.: Zh. Membr. Klet. Biol. 32, 125–132 (2015)Google Scholar
  40. 40.
    Dowling P., Clynes M.: Conditioned media from cell lines: a complementary model to clinical specimens for the discovery of disease-specific biomarkers. Proteomics. 11, 794–804 (2011)CrossRefPubMedGoogle Scholar
  41. 41.
    Voronov E., Shouval D.S., Krelin Y., Cagnano E., Benharroch D., Iwakura Y., Dinearello C.A., Apte R.N.: IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl. Acad. Sci. 100, 2645–2650 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pantschenko A.G., Pushkar I., Anderson K.H., Wang Y., Miller L.J., Kurtzman S.H., Barrows G., Kreutzer S.H.: The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int. J. Oncol. 23, 269–284 (2003)PubMedGoogle Scholar
  43. 43.
    Li Z., Chen L., Qin Z.: Paradoxical roles of IL-4 in tumor immunity. Cell. Mol. Immunol. l6, 415–422 (2009)CrossRefGoogle Scholar
  44. 44.
    Zaidi M.R., Merlino G.: The two faces of interferon-gamma in cancer. Clin. Cancer Res. 17, 6118–6124 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pusztai A., Greer F., Grant G.: Specific uptake of dietary lectins into the systemic circulation of rats. Biochem. Soc. Trans. 17, 481–482 (1989)CrossRefGoogle Scholar
  46. 46.
    King T.P., Pusztai A., Grant G., Slater D.: Immunogold localization of ingested kidney bean (Phaseolus vulgaris) lectins in epithelial cells of the rat small intestine. Histochem. J. 18, 413–420 (1986)CrossRefPubMedGoogle Scholar
  47. 47.
    Kilpatrick D.C., Pusztai A., Grant G., Grahan C., Ewen S.W.B.: Tomato lectin resists digestion in mammalian alimentary canal and binds to intestinal villi without deleterious effects. FEBS Lett. 185, 299–309 (1985)CrossRefPubMedGoogle Scholar
  48. 48.
    Higuchi M., Suga M., Iwai K.: Participation of lectin in biological effects of raw winged bean seeds on rats. Agric. Biol. Chem. 47, 1879–1886 (1983)Google Scholar
  49. 49.
    Nakata S., Kumura T.: Effects of ingested toxic bean lectins on the gastrointestinal tract in the rat. J. Nutr. 115, 1621–1629 (1985)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. Lavanya
    • 1
  • Neesar Ahmed
    • 1
  • Md Khurshid Alam Khan
    • 1
  • Shazia Jamal
    • 1
  1. 1.School of Life SciencesB. S. Abdur Rahman UniversityChennaiIndia

Personalised recommendations