Glycoconjugate Journal

, Volume 33, Issue 4, pp 569–579 | Cite as

The pecking order of skin Advanced Glycation Endproducts (AGEs) as long-term markers of glycemic damage and risk factors for micro- and subclinical macrovascular disease progression in Type 1 diabetes



To date more than 20 glycation products were identified, of which ~15 in the insoluble human skin collagen fraction. The goal of this review is to streamline 30 years of research and ask a set of important questions: in Type 1 diabetes which glycation products correlate best with 1) past mean glycemia 2) reversibility with improved glycemic control, 2) cross-sectional severity of retinopathy, nephropathy and neuropathy and 3) the future long-term risk of progression of micro- and subclinical macrovascular disease. The trio of glycemia related glycation markers furosine (FUR)/fructose-lysine (FL), glucosepane and methylglyoxal hydroimidazolone (MG-H1) emerges as extraordinarily strong predictors of existing and future microvascular disease progression risk despite adjustment for both past and prospective A1c levels. X2 values are up to 25.1, p values generally less than 0.0001, and significance remains after adjustment for various factors such as A1c, former treatment group, log albumin excretion rate, abnormal autonomic nerve function and LDL levels at baseline. In contrast, subclinical cardiovascular progression is more weakly correlated with AGEs/glycemia with X2 values < 5.0 and p values generally < 0.05 after all adjustments. Except for future carotid intima-media thickness, which correlates with total AGE burden (MG-H1, pentosidine, fluorophore LW-1 and decreased collagen solubility), adjusted FUR and Collagen Fluorescence (CLF) are the strongest markers for future coronary artery calcium deposition, while cardiac hypertrophy is associated with LW-1 and CLF adjusted for A1c. We conclude that a robust clinical skin biopsy AGE risk panel for microvascular disease should include at least FUR/FL, glucosepane and MG-H1, while a macrovascular disease risk panel should include at least FL/FUR, MG-H1, LW-1 and CLF.


Glycation Oxidation Retinopathy Neuropathy Nephropathy Coronary artery calcium Intima media thickness Left ventricular mass Methylglyoxal 



2-amino adipic acid


Advanced glycation endproducts


Hemoglobin A1c






Collagen-linked fluorescence






Carotid intima-medial thickening


Cardiovascular disease


Diabetes Control and Complications Trial


Deoxyglucosone-derived imidazoline crosslink


Epidemiology of Diabetes Interventions and Complications


Glyoxal hydroimidazolone 1


Glyoxal-derived imidazoline crosslink


Glyoxal lysine dimer


Intima media thickness


Liquid chromatography mass spectrometry


Long-wave fluorophore 1


Myocardial infarct


Methylglyoxal hydroimidazolone


Methylglyoxal-derived imidazoline crosslink


Methylglyoxal lysine dimer


Pulse wave velocity


Skin autofluorescence


Skin intrinsic fluorescence


Standard deviation



This work was supported by grants from NIDDK (R21 DK-79432 to DRS, DK-101123 to VMM), JDRF (17-2010-318) and NEI (EY-07099 to VMM) and NIH and non-governmental grants to The DCCT/EDIC Research Group. We thank our colleagues from the DCCT/EDIC trial and the team of biostatisticians at the DCCT coordinating Center, Drs. Wanjie Sun, Xiaoyu Gao, Patricia A. Cleary and John M. Lachin for their help throughout the years.


  1. 1.
    Monnier, V.M., Vishwanath, V., Frank, K.E., Elmets, C.A., Dauchot, P., Kohn, R.R.: Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N. Engl. J. Med. 314(7), 403–408 (1986)CrossRefPubMedGoogle Scholar
  2. 2.
    The DCCT Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N. Engl. J. Med. 329(14), 977–986 (1993). doi: 10.1056/NEJM199309303291401 CrossRefGoogle Scholar
  3. 3.
    Nathan, D.M., Group, D.E.R.: The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37(1), 9–16 (2014). doi: 10.2337/dc13-2112 CrossRefPubMedGoogle Scholar
  4. 4.
    Gubitosi-Klug, R.A., Group, D.E.R.: The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: summary and future directions. Diabetes Care 37(1), 44–49 (2014). doi: 10.2337/dc13-2148 CrossRefPubMedGoogle Scholar
  5. 5.
    Nathan, D.M., Bayless, M., Cleary, P., Genuth, S., Gubitosi-Klug, R., Lachin, J.M., Lorenzi, G., Zinman, B., Group, D.E.R.: Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: advances and contributions. Diabetes 62(12), 3976–3986 (2013). doi: 10.2337/db13-1093 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cleary, P., Orchard, T.J., Zinman, B., Wong, N., Detrano, R., Backlund, J.Y., Genuth, S.: Coronary calcification in the diabetes control and complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Cohort for the DCCT/EDIC Study Group. Diabetes Suppl, 652-P (2003)Google Scholar
  7. 7.
    Polak, J.F., Backlund, J.Y., Cleary, P.A., Harrington, A.P., O’Leary, D.H., Lachin, J.M., Nathan, D.M.: Progression of carotid artery intima-media thickness during 12 years in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Diabetes 60(2), 607–613 (2011). doi: 10.2337/db10-0296 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lachin, J.M., Orchard, T.J., Nathan, D.M., Group, D.E.R.: Update on cardiovascular outcomes at 30 years of the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 37(1), 39–43 (2014). doi: 10.2337/dc13-2116 CrossRefPubMedGoogle Scholar
  9. 9.
    Stratton, I.M., Adler, A.I., Neil, H.A., Matthews, D.R., Manley, S.E., Cull, C.A., Hadden, D., Turner, R.C., Holman, R.R.: Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321(7258), 405–412 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Verzijl, N., DeGroot, J., Thorpe, S.R., Bank, R.A., Shaw, J.N., Lyons, T.J., Bijlsma, J.W., Lafeber, F.P., Baynes, J.W., TeKoppele, J.M.: Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 275(50), 39027–39031 (2000)CrossRefPubMedGoogle Scholar
  11. 11.
    Genuth, S., Sun, W., Cleary, P., Gao, X., Sell, D.R., Lachin, J., Group, D.E.R., Monnier, V.M.: Skin advanced glycation end products glucosepane and methylglyoxal hydroimidazolone are independently associated with long-term microvascular complication progression of type 1 diabetes. Diabetes 64(1), 266–278 (2015). doi: 10.2337/db14-0215 CrossRefPubMedGoogle Scholar
  12. 12.
    Genuth, S., Sun, W., Cleary, P., Sell, D.R., Dahms, W., Malone, J., Sivitz, W., Monnier, V.M.: Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes 54(11), 3103–3111 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Monnier, V.M., Bautista, O., Kenny, D., Sell, D.R., Fogarty, J., Dahms, W., Cleary, P.A., Lachin, J., Genuth, S.: Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes 48(4), 870–880 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Monnier, V.M., Sun, W., Gao, X., Sell, D.R., Cleary, P.A., Lachin, J.M., Genuth, S., Group, D.E.R.: Skin collagen advanced glycation endproducts (AGEs) and the long-term progression of sub-clinical cardiovascular disease in type 1 diabetes. Cardiovasc. Diabetol. 14, 118 (2015). doi: 10.1186/s12933-015-0266-4 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Monnier, V.M., Sun, W., Sell, D.R., Fan, X., Nemet, I., Genuth, S.: Glucosepane: a poorly understood advanced glycation end product of growing importance for diabetes and its complications. Clin. Chem. Lab. Med. 52(1), 21–32 (2014). doi: 10.1515/cclm-2013-0174 CrossRefPubMedGoogle Scholar
  16. 16.
    Sell, D.R., Sun, W., Gao, X., Strauch, C., Lachin, J.M., Cleary, P.A., Genuth, S., Group, D.E.R., Monnier, V.M.: Skin collagen fluorophore LW-1 versus skin fluorescence as markers for the long-term progression of subclinical macrovascular disease in type 1 diabetes. Cardiovasc. Diabetol. 15(1), 30 (2016). doi: 10.1186/s12933-016-0343-3 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Thornalley, P.J., Battah, S., Ahmed, N., Karachalias, N., Agalou, S., Babaei-Jadidi, R., Dawnay, A.: Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 375(Pt 3), 581–592 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pop-Busui, R., Herman, W.H., Feldman, E.L., Low, P.A., Martin, C.L., Cleary, P.A., Waberski, B.H., Lachin, J.M., Albers, J.W.: DCCT and EDIC studies in type 1 diabetes: lessons for diabetic neuropathy regarding metabolic memory and natural history. Curr. Diab. Rep. 10(4), 276–282 (2010). doi: 10.1007/s11892-010-0120-8 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Miao, F., Chen, Z., Genuth, S., Paterson, A., Zhang, L., Wu, X., Li, S.M., Cleary, P., Riggs, A., Harlan, D.M., Lorenzi, G., Kolterman, O., Sun, W., Lachin, J.M., Natarajan, R., Group, D.E.R.: Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 63(5), 1748–1762 (2014). doi: 10.2337/db13-1251 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Skyler, J.S., Bergenstal, R., Bonow, R.O., Buse, J., Deedwania, P., Gale, E.A., Howard, B.V., Kirkman, M.S., Kosiborod, M., Reaven, P., Sherwin, R.S., American Diabetes, A., American College of Cardiology, F., American Heart, A: Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Circulation 119(2), 351–357 (2009). doi: 10.1161/CIRCULATIONAHA.108.191305 CrossRefPubMedGoogle Scholar
  21. 21.
    Monnier, V.M., Sell, D.R., Strauch, C., Sun, W., Lachin, J.M., Cleary, P.A., Genuth, S.: The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes. J Diabetes Complications 27(2), 141–149 (2013). doi: 10.1016/j.jdiacomp.2012.10.004 CrossRefPubMedGoogle Scholar
  22. 22.
    Appel, G., Bolton, K., Freedman, B., Wuerth, J.P., Cartwright, K., Investigators, a.t.A.I: Pimagedine (PG) lowers total urinary protein and slows progression of overt diabetic nephropathy in patients with type 1 diabetes mellitus. J. Am. Soc. Nephrol. 10, 153A (1999)Google Scholar
  23. 23.
    Thornalley, P.J.: Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch. Biochem. Biophys. 419(1), 31–40 (2003)CrossRefPubMedGoogle Scholar
  24. 24.
    Dwyer, J.P., Greco, B.A., Umanath, K., Packham, D., Fox, J.W., Peterson, R., Broome, B.R., Greene, L.E., Sika, M., Lewis, J.B.: Pyridoxamine dihydrochloride in diabetic nephropathy (PIONEER-CSG-17): lessons learned from a pilot study. Nephron 129(1), 22–28 (2015). doi: 10.1159/000369310 CrossRefPubMedGoogle Scholar
  25. 25.
    Sell, D.R., Monnier, V.M.: Conversion of arginine into ornithine by advanced glycation in senescent human collagen and lens crystallins. J. Biol. Chem. 279(52), 54173–54184 (2004)CrossRefPubMedGoogle Scholar
  26. 26.
    Sell, D.R., Monnier, V.M.: Ornithine is a novel amino acid and a marker of arginine damage by oxoaldehydes in senescent proteins. Ann. N. Y. Acad. Sci. 1043, 118–128 (2005). doi: 10.1196/annals.1333.015 CrossRefPubMedGoogle Scholar
  27. 27.
    Degenhardt, T.P., Thorpe, S.R., Baynes, J.W.: Chemical modification of proteins by methylglyoxal. Cell. Mol. Biol. (Noisy-le-Grand) 44(7), 1139–1145 (1998)Google Scholar
  28. 28.
    Baynes, J.W., Thorpe, S.R.: Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48(1), 1–9 (1999)CrossRefPubMedGoogle Scholar
  29. 29.
    Baynes, J.W., Thorpe, S.R.: Glycoxidation and lipoxidation in atherogenesis. Free Radic. Biol. Med. 28(12), 1708–1716 (2000)CrossRefPubMedGoogle Scholar
  30. 30.
    Dobler, D., Ahmed, N., Song, L., Eboigbodin, K.E., Thornalley, P.J.: Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes 55(7), 1961–1969 (2006)CrossRefPubMedGoogle Scholar
  31. 31.
    Sun, J.K., Keenan, H.A., Cavallerano, J.D., Asztalos, B.F., Schaefer, E.J., Sell, D.R., Strauch, C.M., Monnier, V.M., Doria, A., Aiello, L.P., King, G.L.: Protection from retinopathy and other complications in patients with type 1 diabetes of extreme duration: the joslin 50-year medalist study. Diabetes Care 34(4), 968–974 (2011). doi: 10.2337/dc10-1675 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dunn, J.A., McCance, D.R., Thorpe, S.R., Lyons, T.J., Baynes, J.W.: Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl)hydroxylysine in human skin collagen. Biochemistry 30(5), 1205–1210 (1991)CrossRefPubMedGoogle Scholar
  33. 33.
    Beisswenger, P.J., Moore, L.L., Curphey, T.J.: Relationship between glycemic control and collagen-linked advanced glycosylation end products in type I diabetes. Diabetes Care 16(5), 689–694 (1993)CrossRefPubMedGoogle Scholar
  34. 34.
    Lyons, T.J., Bailie, K.E., Dyer, D.G., Dunn, J.A., Baynes, J.W.: Decrease in skin collagen glycation with improved glycemic control in patients with insulin-dependent diabetes mellitus. J. Clin. Invest. 87(6), 1910–1915 (1991)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Smuda, M., Henning, C., Raghavan, C.T., Johar, K., Vasavada, A.R., Nagaraj, R.H., Glomb, M.A.: Comprehensive analysis of maillard protein modifications in human lenses: effect of age and cataract. Biochemistry 54(15), 2500–2507 (2015). doi: 10.1021/bi5013194 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Desmons, A., Jaisson, S., Pietrement, C., Rieu, P., Wynckel, A., Gillery, P.: Homocitrulline: a new marker for differentiating acute from chronic renal failure. Clin. Chem. Lab. Med. 54(1), 73–79 (2016). doi: 10.1515/cclm-2015-0398 CrossRefPubMedGoogle Scholar
  37. 37.
    Dahl-Jorgensen, K., Hanssen, K.F., Kierulf, P., Bjoro, T., Sandvik, L., Aagenaes, O.: Reduction of urinary albumin excretion after 4 years of continuous subcutaneous insulin infusion in insulin-dependent diabetes mellitus. The Oslo Study. Acta Endocrinol 117(1), 19–25 (1988)CrossRefPubMedGoogle Scholar
  38. 38.
    Sveen, K.A., Nerdrum, T., Hanssen, K.F., Brekke, M., Torjesen, P.A., Strauch, C.M., Sell, D.R., Monnier, V.M., Dahl-Jorgensen, K., Steine, K.: Impaired left ventricular function and myocardial blood flow reserve in patients with long-term type 1 diabetes and no significant coronary artery disease: associations with protein glycation. Diab Vasc Dis Res 11(2), 84–91 (2014). doi: 10.1177/1479164113518805 CrossRefPubMedGoogle Scholar
  39. 39.
    Sveen, K.A., Dahl-Jorgensen, K., Stensaeth, K.H., Angel, K., Seljeflot, I., Sell, D.R., Monnier, V.M., Hanssen, K.F.: Glucosepane and oxidative markers in skin collagen correlate with intima media thickness and arterial stiffness in long-term type 1 diabetes. J Diabetes Complications 29(3), 407–412 (2015). doi: 10.1016/j.jdiacomp.2014.12.011 CrossRefPubMedGoogle Scholar
  40. 40.
    Fokkens, B.T., Smit A.J. (2016). Skin fluorescence as a clinical tool for non-invasive assessment of advanced glycation and long-term complications of diabetes. Glycoconj J. doi: 10.1007/s10719-016-9683-1

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Vincent M. Monnier
    • 1
    • 2
  • Saul Genuth
    • 3
  • David R. Sell
    • 1
  1. 1.Department of PathologyCase Western Reserve UniversityClevelandUSA
  2. 2.Department of BiochemistryCase Western Reserve UniversityClevelandUSA
  3. 3.Department of MedicineCase Western Reserve UniversityClevelandUSA

Personalised recommendations