Glycoconjugate Journal

, Volume 33, Issue 4, pp 671–681 | Cite as

Iridoids are natural glycation inhibitors

  • Brett J. West
  • Shixin Deng
  • Akemi Uwaya
  • Fumiyuki Isami
  • Yumi Abe
  • Sho-ichi Yamagishi
  • C. Jarakae Jensen


Glycation of amino acid residues in proteins leads to the eventual formation of advanced glycation end products (AGEs). AGE formation significantly influences human health and the aging process. AGE accumulation rates may be slowed by modifications to lifestyle or by pharmacological strategies. But the use of therapeutic drugs is not an appropriate means of controlling AGEs within the general population. However, phytochemical constituents in plant-based foods exhibit anti-glycation activities and may be more appropriate for general consumption. Among these phytochemicals are iridoids. The anti-AGE potential of iridoids has been demonstrated in vitro and in vivo, while also revealing possible mechanisms of action. Inclusion of iridoid food sources in the diet may be a useful component of strategies intended to mitigate AGE accumulation within the body.


Iridoid Glycation Dicarbonyls Advanced glycation end products 


Compliance with ethical standards

Conflict of Interest

The authors, with the exception of Sho-ichi Yamagishi, have been employed by Morinda, Inc., a manufacturer of food products containing iridoids. Sho-ichi Yamagishi has participated as a guest lecturer at educational conferences organized by Morinda, Inc.


  1. 1.
    Luevano-Contreras C., Chapman-Novakofski K.: Dietary advanced glycation end products and aging. Nutrients. 2(12), 1247–1265 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Vlassara H., Palace M.R.: Diabetes and advanced glycation endproducts. J. Intern. Med. 251(2), 87–101 (2002)PubMedCrossRefGoogle Scholar
  3. 3.
    Higgins P.J., Bunn H.F.: Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. J. Biol. Chem. 256(10), 5204–5208 (1981)PubMedGoogle Scholar
  4. 4.
    Thornalley P.J., Langborg A., Minhas H.S.: Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. The Biochem. J. 344(1), 109–116 (1999)PubMedCrossRefGoogle Scholar
  5. 5.
    Ulrich P., Cerami A.: Protein glycation, diabetes, and aging. Recent Prog. Horm. Res. 56, 1–21 (2001)PubMedCrossRefGoogle Scholar
  6. 6.
    Miyata T., Wada Y., Cai Z., Iida Y., Horie K., Yasuda Y., Maeda K., Kurokawa K., van Ypersele de Strihou C.: Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int. 51(4), 1170–1181 (1997)PubMedCrossRefGoogle Scholar
  7. 7.
    Brownlee M.: Biochemistry and molecular cell biology of diabetic complications. Nature. 414(6865), 913–820 (2001)CrossRefGoogle Scholar
  8. 8.
    Ramasamy R.: Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids. 42(4), 1151–1161 (2012)PubMedCrossRefGoogle Scholar
  9. 9.
    Sing R., Barden A., Mori T., Beilin L.: Advanced glycation end-products: a review. Diabetologia. 44(2), 129–146 (2001)CrossRefGoogle Scholar
  10. 10.
    Semba R.D., Nicklett E.J., Ferrucci L.: Does accumulation of advanced glycation end products contribute to the aging phenotype? J. Gerontol. A Biol. Sci. Med. Sci. 65(9), 963–975 (2010)PubMedCrossRefGoogle Scholar
  11. 11.
    Wolffenbuttel B.H., van Haeften T.W.: Prevention of complications in non-insulin-dependent diabetes mellitus (NIDDM). Drugs. 50(2), 263–288 (1995)PubMedCrossRefGoogle Scholar
  12. 12.
    Yamagishi S., Nakamura K., Matsui T., Ueda S., Noda Y., Imaizumi T.: Inhibitors of advanced glycation end products (AGEs): potential utility for the treatment of cardiovascular disease. Cardiovasc. Ther. 26(1), 50–58 (2008)PubMedGoogle Scholar
  13. 13.
    Alam A., Ahsan A., Alam S.: Newer insights in drugs inhibiting formation and accumulation of advanced glycation end products. J. Biochem. Tech. 5(1), 666–672 (2013)Google Scholar
  14. 14.
    Cerami C., Founds H., Nicholl I., Mitsuhashi T., Giordano D., Vanpatten S., Lee A., Al-Abed Y., Vlassara H., Bucala R., Cerami A.: Tobacco smoke is a source of toxic reactive glycation products. Proc. Natl. Acad. Sci. U. S. A. 94(25), 13915–13920 (1997)PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yamagishi S., Nakajima S., Uwaya A., Isami F.: Association between skin autofluorescence and food and lifestyle measured with the TruAge scanner. Pharma Medica. 31(10), 197–203 (2013) [Article in Japanese]Google Scholar
  16. 16.
    Nomoto K., Yagi M., Arita S., Ogura M., Yonei Y.: Skin Accumulation of Advanced Glycation End Products and Lifestyle Behaviors in Japanese. Anti-Aging Med. 9(6), 165–173 (2012)Google Scholar
  17. 17.
    Peng X., Ma J., Chen F., Wang M.: Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct. 2(6), 289–301 (2011)PubMedCrossRefGoogle Scholar
  18. 18.
    Nagai R., Shirakawa J., Ohno R., Moroishi N., Nagai M.: Inhibition of AGEs formation by natural products. Amino Acids. 46(2), 261–266 (2014)PubMedCrossRefGoogle Scholar
  19. 19.
    Rahbar S., Figarola J.L.: Novel inhibitors of advanced glycation endproducts. Arch. Biochem. Biophys. 419(1), 63–79 (2003)PubMedCrossRefGoogle Scholar
  20. 20.
    Odjakova M., Popova E., Al Sharif M., Mironova R.: Plant-Derived Agents with Anti-Glycation Activity. In: Petrescu S. (ed.) Glycosylation, pp. 223–256. InTech, Rijeka (2012)Google Scholar
  21. 21.
    Fujikawa T., Hirata T., Hosoo S., Nakajima K., Wada A., Yurugi Y., Soya H., Matsui T., Yamaguchi A., Ogata M., Nishibe S.: Asperuloside stimulates metabolic function in rats across several organs under high-fat diet conditions, acting like the major ingredient of Eucommia leaves with anti-obesity activity. J. Nutr. Sci. 1(e10), 1–11 (2012)Google Scholar
  22. 22.
    Li B., Zhang D.M., Luo Y.M., Chen X.G.: Three new and antitumor anthraquinone glycosides from Lasianthus acuminatissimus MERR. Chem. Pharm. Bull. (Tokyo). 54(3), 297–300 (2006)CrossRefGoogle Scholar
  23. 23.
    Nakamura T., Nakazawa Y., Onizuka S., Satoh S., Chiba A., Sekihashi K., Miura A., Yasugahira N., Sasaki Y.F.: Antimutagenicity of Tochu tea (an aqueous extract of Eucommia ulmoides leaves): 1. The clastogen-suppressing effects of Tochu tea in CHO cells and mice. Mutat. Res. 388(1), 7–20 (1997)Google Scholar
  24. 24.
    Qiu J., Chi G., Wu Q., Ren Y., Chen C., Feng H.: Pretreatment with the compound asperuloside decreases acute lung injury via inhibiting MAPK and NFκB signaling in a murine model. Int. Immunopharmacol. 31, 109–115 (2016)PubMedCrossRefGoogle Scholar
  25. 25.
    Kim D.H., Lee H.J., Oh Y.J., Kim M.J., Kim S.H., Jeong T.S., Baek N.I.: Iridoid glycosides isolated from Oldenlandia diffusa inhibit LDL-oxidation. Arch. Pharm. Res. 28(10), 1156–1160 (2005)PubMedCrossRefGoogle Scholar
  26. 26.
    Ishiguro K., Yamaki M., Takagi S.: Studies on the iridoid related compounds. I. On the antimicrobial activity of aucubigenin and certain iridoid aglycones. Yakugaku Zasshi. 102(8), 755–759 (1982)PubMedGoogle Scholar
  27. 27.
    West B.J., Deng S., Jensen C.J.: Nutrient and phytochemical analyses of processed noni puree. Food Res. Int. 44(7), 2295–2301 (2011)CrossRefGoogle Scholar
  28. 28.
    Wang M.Y., Peng L., Weidenbacher-Hoper V., Deng S., Anderson G., West B.J.: Noni juice improves serum lipid profiles and other risk markers in cigarette smokers. Scientific World Journal. 2012(article ID), 594657 (2012)PubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang X., Tang S., Zhai H., Duan H.: Studies on anti-tumor metastatic constituents from Ardisia crenata. Zhongguo Zhong Yao Za Zhi. 36(7), 881–885 (2011)PubMedGoogle Scholar
  30. 30.
    Ling S.K., Tanaka T., Kouno I.: Effects of iridoids on lipoxygenase and hyaluronidase activities and their activation by beta-glucosidase in the presence of amino acids. Biol. Pharm. Bull. 26(3), 352–356 (2003)PubMedCrossRefGoogle Scholar
  31. 31.
    Akihisa T., Matsumoto K., Tokuda H., Yasukawa K., Seino K., Nakamoto K., Kuninaga H., Suzuki T., Kimura Y.: Anti-inflammatory and potential cancer chemopreventive constituents of the fruits of Morinda citrifolia (Noni). J. Nat. Prod. 70(5), 754–757 (2007)PubMedCrossRefGoogle Scholar
  32. 32.
    Shim K.M., Choi S.H., Jeong M.J., Kang S.S.: Effects of aucubin on the healing of oral wounds. In Vivo. 21(6), 1037–1041 (2007)PubMedGoogle Scholar
  33. 33.
    Kang Z., Wu W.H., Wang J.J., Ouyang D.S.: Research advances in pharmacology of aucubin and aucubigenin. Zhongguo Zhong Yao Za Zhi. 32(24), 2585–2587 (2007)PubMedGoogle Scholar
  34. 34.
    Chang I.M.: Liver-protective activities of aucubin derived from traditional oriental medicine. Res. Commun. Mol. Pathol. Pharmacol. 102(2), 189–204 (1998)PubMedGoogle Scholar
  35. 35.
    Ha H., Ho J., Shin S., Kim H., Koo S., Kim I.H., Kim C.: Effects of Eucommiae Cortex on osteoblast-like cell proliferation and osteoclast inhibition. Arch. Pharm. Res. 26(11), 929–936 (2003)PubMedCrossRefGoogle Scholar
  36. 36.
    Wan D., Xue L., Zhu H., Luo Y.: Catalpol induces neuroprotection and prevents memory dysfunction through the cholinergic system and BDNF. Evid. Based Complement. Alternat. Med. 2013(article ID), 134852 (2013)Google Scholar
  37. 37.
    Bao Q., Shen X., Qian L., Gong C., Nie M., Dong Y.: Anti-diabetic activities of catalpol in db/db mice. Korean J. Physiol. Pharmacol. 20(2), 153–160 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yang, S., Deng, H., Zhang, Q., Xie, J., Zeng, H., Jin, X., Ling, Z., Shan, Q., Liu, M., Ma, Y., Tang, J., Wei, Q.: Amelioration of diabetic mouse nephropathy by catalpol correlates with down-regulation of Grb10 expression and activation of insulin-like growth factor 1/insulin-like growth factor 1 receptor signaling. PLoS One 11(3), article ID e0151857 (2016)Google Scholar
  39. 39.
    Tian Y.Y., Jiang B., An L.J., Bao Y.M.: Neuroprotective effect of catalpol against MPP(+)-induced oxidative stress in mesencephalic neurons. Eur. J. Pharmacol. 568(1–3), 142–148 (2007)PubMedCrossRefGoogle Scholar
  40. 40.
    Huang W.J., Niu H.S., Lin M.H., Cheng J.T., Hsu F.L.: Antihyperglycemic effect of catalpol in streptozotocin-induced diabetic rats. J. Nat. Prod. 73(6), 1170–1172 (2010)PubMedCrossRefGoogle Scholar
  41. 41.
    Kang D.G., Moon M.K., Lee A.S., Kwon T.O., Kim J.S., Lee H.S.: Cornuside suppresses cytokine-induced proinflammatory and adhesion molecules in the human umbilical vein endothelial cells. Biol. Pharm. Bull. 30(9), 1796–1799 (2007)PubMedCrossRefGoogle Scholar
  42. 42.
    Song S.Z., Choi Y.H., Jin G.Y., Li G.Z., Yan G.H.: Protective effect of cornuside against carbon tetrachloride-induced acute hepatic injury. Biosci. Biotechnol. Biochem. 75(4), 656–661 (2011)PubMedCrossRefGoogle Scholar
  43. 43.
    Li L., Jin G., Jiang J., Zheng M., Jin Y., Lin Z., Li G., Choi Y., Yan G.: Cornuside inhibits mast cell-mediated allergic response by down-regulating MAPK and NF-κB signaling pathways. Biochem. Biophys. Res. Commun. 473(2), 408–414 (2016)PubMedCrossRefGoogle Scholar
  44. 44.
    Deng, S, West, BJ, Jensen, C.J.: UPLC-TOF-MS characterization and identification of bioactive iridoids in Cornus mas fruit. J. Anal. Methods Chem. 2013, article ID 710972 (2013)Google Scholar
  45. 45.
    Choi Y.H., Jin G.Y., Li G.Z., Yan G.H.: Cornuside suppresses lipopolysaccharide-induced inflammatory mediators by inhibiting nuclear factor-kappa B activation in RAW 264.7 macrophages. Biol. Pharm. Bull. 34(7), 959–966 (2011)PubMedCrossRefGoogle Scholar
  46. 46.
    Jiang W.L., Zhang S.M., Tang X.X., Liu H.Z.: Protective roles of cornuside in acute myocardial ischemia and reperfusion injury in rats. Phytomedicine. 18(4), 266–271 (2011)PubMedCrossRefGoogle Scholar
  47. 47.
    Jiang W.L., Chen X.G., Zhu H.B., Tian J.W.: Effect of cornuside on experimental sepsis. Planta Med. 75(6), 614–619 (2009)PubMedCrossRefGoogle Scholar
  48. 48.
    Lin M.H., Liu H.K., Huang W.J., Huang C.C., Wu T.H., Hsu F.L.: Evaluation of the potential hypoglycemic and Beta-cell protective constituents isolated from Corni fructus to tackle insulin-dependent diabetes mellitus. J. Agric. Food Chem. 59(14), 7743–7751 (2011)PubMedCrossRefGoogle Scholar
  49. 49.
    Wang M.Y., Peng L., Weidenbacher-Hoper V., Deng S., Anderson G., West B.J.: Noni juice improves serum lipid profiles and other risk markers in cigarette smokers. Sci. World J. 2012, Article ID 594657 (2012)Google Scholar
  50. 50.
    Ma D.L., Chen M., Su C.X., West B.J.: In vivo antioxidant activity of deacetylasperulosidic acid in noni. J. Anal. Methods Chem. 2013, article ID 804504 (2013)CrossRefGoogle Scholar
  51. 51.
    Kapadia G.J., Sharma S.C., Tokuda H., Nishino H., Ueda S.: Inhibitory effect of iridoids on Epstein–Barr virus activation by a short-term in vitro assay for anti-tumor promoters. Cancer Lett. 102(1–2), 223–226 (1996)PubMedCrossRefGoogle Scholar
  52. 52.
    Murata K., Abe Y., Futamura-Masuda M., Uwaya A., Isami F., Deng S., Matsuda H.: Effect of Morinda citrifolia fruit extract and its iridoid glycosides on blood fluidity. J. Nat. Med. 68(3), 498–504 (2014)PubMedCrossRefGoogle Scholar
  53. 53.
    Liu W., Li G., Hölscher C., Li L.: Neuroprotective effects of geniposide on Alzheimer's disease pathology. Rev. Neurosci. 26(4), 371–383 (2015)PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang W.L., Zhu L., Jiang J.G.: Active ingredients from natural botanicals in the treatment of obesity. Obes. Rev. 15(12), 957–967 (2014)PubMedCrossRefGoogle Scholar
  55. 55.
    Yao D.D., Yang L., Wang Y., Liu C., Wei Y.J., Jia X.B., Yin W., Shu L.: Geniposide promotes beta-cell regeneration and survival through regulating β-catenin/TCF7L2 pathway. Cell Death Dis. 6, article ID e1746 (2015)CrossRefGoogle Scholar
  56. 56.
    Hwang H., Kim C., Kim S.M., Kim W.S., Choi S.H., Chang I.M., Ahn K.S.: The hydrolyzed products of iridoid glycoside with β-glucosidase treatment exert anti-proliferative effects through suppression of STAT3 activation and STAT3-regulated gene products in several human cancer cells. Pharm. Biol. 50(1), 8–17 (2012)PubMedCrossRefGoogle Scholar
  57. 57.
    Liao P., Liu L., Wang B., Li W., Fang X., Guan S.: Baicalin and geniposide attenuate atherosclerosis involving lipids regulation and immunoregulation in ApoE−/− mice. Eur. J. Pharmacol. 740, 488–495 (2014)PubMedCrossRefGoogle Scholar
  58. 58.
    Sun P., Chen J.Y., Li J., Sun M.R., Mo W.C., Liu K.L., Meng Y.Y., Liu Y., Wang F., He R.Q., Hua Q.: The protective effect of geniposide on human neuroblastoma cells in the presence of formaldehyde. BMC Complement. Altern. Med. 13, article ID 152 (2013)Google Scholar
  59. 59.
    Son M., Lee M., Ryu E., Moon A., Jeong C.S., Jung Y.W., Park G.H., Sung G.H., Cho H., Kang H.: Genipin as a novel chemical activator of EBV lytic cycle. J. Microbiol. 53(2), 155–165 (2015)PubMedCrossRefGoogle Scholar
  60. 60.
    Manon L., Béatrice B., Thierry O., Jocelyne P., Fathi M., Evelyne O., Alain B.: Antimutagenic potential of harpagoside and Harpagophytum procumbens against 1-nitropyrene. Pharmacogn. Mag. 11(Suppl 1), S29–S36 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sun X., Xiong Z., Zhang Y., Meng Y., Xu G., Xia Z., Li J., Zhang R., Ke Z., Xia Z., Hu Y.: Harpagoside attenuates MPTP/MPP+ induced dopaminergic neurodegeneration and movement disorder via elevating glial cell line-derived neurotrophic factor. J. Neurochem. 120(6), 1072–1083 (2012)PubMedGoogle Scholar
  62. 62.
    Gagnier J.J., Chrubasik S., Manheimer E.: Harpgophytum procumbens for osteoarthritis and low back pain: a systematic review. BMC Complement. Altern. Med. 4, article ID 13 (2004)CrossRefGoogle Scholar
  63. 63.
    Georgiev M.I., Ivanovska N., Alipieva K., Dimitrova P., Verpoorte R.: Harpagoside: from Kalahari Desert to pharmacy shelf. Phytochemistry. 92, 8–15 (2013)PubMedCrossRefGoogle Scholar
  64. 64.
    Ma W., Wang K.J., Cheng C.S., Yan G.Q., Lu W.L., Ge J.F., Cheng Y.X., Li N.: Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy. J. Ethnopharmacol. 153(3), 840–845 (2014)PubMedCrossRefGoogle Scholar
  65. 65.
    Yamabe N., Noh J.S., Park C.H., Kang K.S., Shibahara N., Tanaka T., Yokozawa T.: Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Eur. J. Pharmacol. 648(1–3), 179–187 (2010)PubMedCrossRefGoogle Scholar
  66. 66.
    Park C.H., Tanaka T., Kim J.H., Cho E.J., Park J.C., Shibahara N., Yokozawa T.: Hepato-protective effects of loganin, iridoid glycoside from Corni Fructus, against hyperglycemia-activated signaling pathway in liver of type 2 diabetic db/db mice. Toxicology. 290(1), 14–21 (2011)PubMedCrossRefGoogle Scholar
  67. 67.
    Park C.H., Yamabe N., Noh J.S., Kang K.S., Tanaka T., Yokozawa T.: The beneficial effects of morroniside on the inflammatory response and lipid metabolism in the liver of db/db mice. Biol. Pharm. Bull. 32(10), 1734–1740 (2009)PubMedCrossRefGoogle Scholar
  68. 68.
    Wang W., Xu J., Li L., Wang P., Ji X., Ai H., Zhang L., Li L.: Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res. Bull. 83(5), 196–201 (2010)PubMedCrossRefGoogle Scholar
  69. 69.
    Barbaro B., Toietta G., Maggio R., Arciello M., Tarocchi M., Galli A., Balsano C.: Effects of the olive-derived polyphenol oleuropein on human health. Int. J. Mol. Sci. 15(10), 18508–18524 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Omar S.H.: Oleuropein in olive and its pharmacological effects. Sci. Pharm. 78(2), 133–154 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sumiyoshi M., Kimura Y.: Effects of olive leaf extract and its main component oleuroepin on acute ultraviolet B irradiation-induced skin changes in C57BL/6 J mice. Phytother. Res. 24(7), 995–1003 (2010)PubMedGoogle Scholar
  72. 72.
    Giamarellos-Bourboulis E.J., Geladopoulos T., Chrisofos M., Koutoukas P., Vassiliadis J., Alexandrou I., Tsaganos T., Sabracos L., Karagianni V., Pelekanou E., Tzepi I., Kranidioti H., Koussoulas V., Giamarellou H.: Oleuropein: a novel immunomodulator conferring prolonged survival in experimental sepsis by Pseudomonas aeruginosa. Shock. 26(4), 410–416 (2006)PubMedCrossRefGoogle Scholar
  73. 73.
    Zhou J.: Bioactive glycosides from Chinese medicines. Mem. Inst. Oswaldo Cruz. 86(Suppl. 2), 231–234 (1991)PubMedCrossRefGoogle Scholar
  74. 74.
    Sun H., Li L., Zhang A., Zhang N., Lv H., Sun W., Wang X.: Protective effects of sweroside on human MG-63 cells and rat osteoblasts. Fitoterapia. 84, 174–179 (2013)PubMedCrossRefGoogle Scholar
  75. 75.
    Oztürk N., Korkmaz S., Oztürk Y., Başer K.H.: Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts. Planta Med. 72(4), 289–294 (2006)PubMedCrossRefGoogle Scholar
  76. 76.
    Kumarasamy Y., Nahar L., Cox P.J., Jaspars M., Sarker S.D.: Bioactivity of secoiridoid glycosides from Centaurium erythraea. Phytomedicine. 10(4), 344–347 (2003)PubMedCrossRefGoogle Scholar
  77. 77.
    Deng S., West B., Palu A., Jensen J.: Determination and comparative analysis of major iridoids in different parts and cultivation sources of Morinda citrifolia. Phytochem. Anal. 22(1), 26–30 (2011)PubMedCrossRefGoogle Scholar
  78. 78.
    Ranalli R., Marchegiani D., Contento S., Girardi F., Nicolosi M.P., Brullo M.D.: Variations of iridoid oleuropein in Italian olive varieties during growth and maturation. Eur. J. Lipid Sci. Tech. 111(7), 678–687 (2009)CrossRefGoogle Scholar
  79. 79.
    Bianchi G.: Lipids and phenols in table olives. Eur. J. Lipid Sci. Tec. 105(5), 229–242 (2003)CrossRefGoogle Scholar
  80. 80.
    Tuck K.L., Hayball P.J.: Major phenolic compounds in olive oil: metabolism and health effects. J. Nutr. Biochem. 13(11), 636–644 (2002)PubMedCrossRefGoogle Scholar
  81. 81.
    Savournin C., Baghdikian B., Elias R., Dargouth-Kesraoui F., Boukef K., Balansard G.: Rapid high-performance liquid chromatography analysis for the quantitative determination of oleuropein in Olea europaea leaves. J. Agric. Food Chem. 49(2), 618–621 (2001)PubMedCrossRefGoogle Scholar
  82. 82.
    Lockyer S., Corona G., Yaqoob P., Spencer J.P., Rowland I.: Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: a randomised, double-blind, placebo-controlled, cross-over trial. Br. J. Nutr. 114(1), 75–83 (2015)PubMedCrossRefGoogle Scholar
  83. 83.
    El S.N., Karakaya S.: Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr. Rev. 67(11), 632–638 (2009)PubMedCrossRefGoogle Scholar
  84. 84.
    Jensen S.R., Kjaer A., Nielsen B.J.: The genus Comus: non-flavonoid glucosides as taxonomic markers. Biochem. System. Ecol. 3(2), 75–78 (1975)CrossRefGoogle Scholar
  85. 85.
    Du W., Cai H., Wang M., Ding X., Yang H., Cai B.: Simultaneous determination of six active components in crude and processed Fructus Corni by high performance liquid chromatography. J. Pharm. Biomed. Anal. 48(1), 194–197 (2008)PubMedCrossRefGoogle Scholar
  86. 86.
    Kucharskaa A.Z., Szumnyb A., Sokół-Łętowskaa A., Pióreckic N., Klymenkoe S.V.: Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. J. Food Comp. Anal. 40, 95–102 (2015)CrossRefGoogle Scholar
  87. 87.
    Yamabe N., Kang K.S., Matsuo Y., Tanaka T., Yokozawa T.: Identification of antidiabetic effect of iridoid glycosides and low molecular weight polyphenol fractions of Corni Fructus, a constituent of Hachimi-jio-gan, in streptozotocin-induced diabetic rats. Biol. Pharm. Bull. 30(7), 1289–1296 (2007)PubMedCrossRefGoogle Scholar
  88. 88.
    West B.J., Deng S., Jensen C.J., Palu A.K., Berrio L.F.: Antioxidant, toxicity, and iridoid tests of processed Cornelian cherry fruits. Int. J. Food Sc. Tech. 47(7), 1392–1397 (2012)CrossRefGoogle Scholar
  89. 89.
    Jensen, H.D., Krogfelt, K.A., Cornett, C., Hansen, S.H., Christensen, S.B.: Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus). J. Agric. Food Chem. 50(23), 6871–6874 (2002)Google Scholar
  90. 90.
    Zhang Q., Su Y., Zhang J.: Seasonal difference in antioxidant capacity and active compounds contents of Eucommia ulmoides Oliver leaf. Molecules. 18(2), 1857–1868 (2013)PubMedCrossRefGoogle Scholar
  91. 91.
    Li C., Dong J., Tian J., Deng Z., Song X.: LC/MS/MS determination and pharmacokinetic study of iridoid glycosides monotropein and deacetylasperulosidic acid isomers in rat plasma after oral administration of Morinda officinalis extract. Biomed. Chromatogr. 30(2), 163–168 (2016)PubMedCrossRefGoogle Scholar
  92. 92.
    Luo, Y.D., Chen, J., Cao, J., Wen, X.D., Li, P.: Determination of sweroside in rat plasma and bile for oral bioavailability and hepatobiliary excretion. Chem. Pharm. Bull. (Tokyo) 57(1), 79–83 (2009)Google Scholar
  93. 93.
    Suh N.J., Shim C.K., Lee M.H., Kim S.K., Chang I.M.: Pharmacokinetic study of an iridoid glucoside: aucubin. Pharm. Res. 8(8), 1059–1063 (1991)PubMedCrossRefGoogle Scholar
  94. 94.
    de Bock M., Thorstensen E.B., Derraik J.G., Henderson H.V., Hofman P.L., Cutfield W.S.: Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol. Nutr. Food Res. 57(11), 2079–2085 (2013)PubMedCrossRefGoogle Scholar
  95. 95.
    Jemai H., El Feki A., Sayadi S.: Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J. Agric. Food Chem. 57(19), 8798–8804 (2009)PubMedCrossRefGoogle Scholar
  96. 96.
    Carluccio M.A., Siculella L., Ancora M.A., Massaro M., Scoditti E., Storelli C., Visioli F., Distante A., De Caterina R.: Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler. Thromb. Vasc. Biol. 23(4), 622–629 (2003)PubMedCrossRefGoogle Scholar
  97. 97.
    Elamin M.H., Daghestani M.H., Omer S.A., Elobeid M.A., Virk P., Al-Olayan E.M., Hassan Z.K., Mohammed O.B., Aboussekhra A.: Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells. Food Chem. Toxicol. 53, 310–316 (2013)PubMedCrossRefGoogle Scholar
  98. 98.
    Scoditti, E., Calabriso, N., Massaro, M., Pellegrino, M., Storelli, C., Martines, G., De Caterina, R., Carluccio, M.A.: Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch. Biochem. Biophys. 527(2), 81–89 (2012a)Google Scholar
  99. 99.
    Kontogianni V.G., Charisiadis P., Margianni E., Lamari F.N., Gerothanassis I.P., Tzakos A.G.: Olive leaf extracts are a natural source of advanced glycation end product inhibitors. J. Med. Food. 16(9), 817–822 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Navarro M., Morales F.J.: Mechanism of reactive carbonyl species trapping by hydroxytyrosol under simulated physiological conditions. Food Chem. 175, 92–99 (2015)PubMedCrossRefGoogle Scholar
  101. 101.
    Wainstein J., Ganz T., Boaz M., Bar Dayan Y., Dolev E., Kerem Z., Madar Z.: Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J. Med. Food. 15(7), 605–610 (2012)PubMedCrossRefGoogle Scholar
  102. 102.
    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA): Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 9(4), article ID 2033 (2011)Google Scholar
  103. 103.
    Marrugat J., Covas M.I., Fitó M., Schröder H., Miró-Casas E., Gimeno E., López-Sabater M.C., de la Torre R., Farré M.: SOLOS Investigators: Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation–a randomized controlled trial. Eur. J. Nutr. 43(3), 140–147 (2004)PubMedCrossRefGoogle Scholar
  104. 104.
    Covas M.I., de la Torre K., Farré-Albaladejo M., Kaikkonen J., Fitó M., López-Sabater C., Pujadas-Bastardes M.A., Joglar J., Weinbrenner T., Lamuela-Raventós R.M., de la Torre R.: Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Radic. Biol. Med. 40(4), 608–616 (2006)PubMedCrossRefGoogle Scholar
  105. 105.
    de la Torre-Carbot K., Chávez-Servín J.L., Jaúregui O., Castellote A.I., Lamuela-Raventós R.M., Nurmi T., Poulsen H.E., Gaddi A.V., Kaikkonen J., Zunft H.F., Kiesewetter H., Fitó M., Covas M.I., López-Sabater M.C.: Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL. J. Nutr. 140(3), 501–508 (2010)PubMedCrossRefGoogle Scholar
  106. 106.
    Sajithlal G.B., Chandrakasan G.: Role of lipid peroxidation products in the formation of advanced glycation end products: An in vitro study on collagen. Proc. Indian Acad. Sci. (Chem. Sci.). 111(1), 215–229 (1999)Google Scholar
  107. 107.
    Navarro M., Morales F.J.: In vitro investigation on the antiglycative and carbonyl trapping activities of hydroxytyrosol. Eur. Food Res, Tech (2016). doi: 10.1007/s00217-015-2614-8 Google Scholar
  108. 108.
    Kim H.Y., Moon B.H., Lee H.J., Choi D.H.: Flavonol glycosides from the leaves of Eucommia ulmoides O. with glycation inhibitory activity. J. Ethnopharmacol. 93(2–3), 227–230 (2004)PubMedCrossRefGoogle Scholar
  109. 109.
    Jin L., Xue H.Y., Jin L.J., Li S.Y., Xu Y.P.: Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J. Pharmacol. 582(1–3), 162–167 (2008)PubMedCrossRefGoogle Scholar
  110. 110.
    Park K.S.: Aucubin, a naturally occurring iridoid glycoside inhibits TNF-α-induced inflammatory responses through suppression of NF-κB activation in 3 T3-L1 adipocytes. Cytokine. 62(3), 407–412 (2013)PubMedCrossRefGoogle Scholar
  111. 111.
    Shin J.S., Yun K.J., Chung K.S., Seo K.H., Park H.J., Cho Y.W., Baek N.I., Jang D., Lee K.T.: Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-κB inactivation. Food Chem. Toxicol. 53, 263–271 (2013)PubMedCrossRefGoogle Scholar
  112. 112.
    Hong L., Huiqin X., Yunjie H.: Impact of fructus Corni iridoid glycosides on ACE-P of rat serum in vascular complications of diabetes. World Sci. Tech. – Modern. Trad. Chinese Med. Materia Medica. 5(6), 51–53 (2003)Google Scholar
  113. 113.
    Shi Y., Xu H.Q.: Protecting effect of total iridoid glycoside in fructus Corni officinalis on experimental diabetes models with heart disease. J. Nanjing Univ. Trad. Chinese Med. 2006(1), 35–37 (2006)Google Scholar
  114. 114.
    Yamabe N., Kang K.S., Goto E., Tanaka T., Yokozawa T.: Beneficial effect of Corni fructus, a constituent of hachimi-jio-gan, on advanced glycation end-product-mediated renal injury in streptozotocin-treated diabetic rats. Biol. Pharm. Bull. 30(3), 520–526 (2007)PubMedCrossRefGoogle Scholar
  115. 115.
    Yamabe N., Kang K.S., Matsuo Y., Tanaka T., Yokozawa T.: Identification of antidiabetic effect of iridoid glycosides and low molecular weight polyphenol fractions of Corni Fructus, a constituent of Hachimi-jio-gan, in streptozotocin-induced diabetic rats. Biol. Pharm. Bull. 30(7), 1289–1296 (2007)PubMedCrossRefGoogle Scholar
  116. 116.
    Xu H.Q., Hao H.P.: Effects of iridoid total glycoside from Cornus officinalis on prevention of glomerular overexpression of transforming growth factor beta 1 and matrixes in an experimental diabetes model. Biol. Pharm. Bull. 27(7), 1014–1018 (2004)PubMedCrossRefGoogle Scholar
  117. 117.
    Rumble J.R., Cooper M.E., Soulis T., Cox A., Wu L., Youssef S., Jasik M., Jerums G., Gilbert R.E.: Vascular hypertrophy in experimental diabetes. Role of advanced glycation end products. J. Clin. Invest. 99(5), 1016–1027 (1997)PubMedGoogle Scholar
  118. 118.
    Park C.H., Noh J.S., Kim J.H., Tanaka T., Zhao Q., Matsumoto K., Shibahara N., Yokozawa T.: Evaluation of morroniside, iridoid glycoside from Corni Fructus, on diabetes-induced alterations such as oxidative stress, inflammation, and apoptosis in the liver of type 2 diabetic db/db mice. Biol. Pharm. Bull. 34(10), 1559–1565 (2011)PubMedCrossRefGoogle Scholar
  119. 119.
    Liu K., Xu H., Lv G., Liu B., Lee M.K., Lu C., Lv X., Wu Y.: Loganin attenuates diabetic nephropathy in C57BL/6 J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products. Life Sci. 123, 78–85 (2015)PubMedCrossRefGoogle Scholar
  120. 120.
    Yokozawa T., Yamabe N., Kim H.Y., Kang K.S., Hur J.M., Park C.H., Tanaka T.: Protective effects of morroniside isolated from Corni Fructus against renal damage in streptozotocin-induced diabetic rats. Biol. Pharm. Bull. 31(7), 1422–1428 (2008)PubMedCrossRefGoogle Scholar
  121. 121.
    Xu H., Shen J., Liu H., Shi Y., Li L., Wei M.: Morroniside and loganin extracted from Cornus officinalis have protective effects on rat mesangial cell proliferation exposed to advanced glycation end products by preventing oxidative stress. Can. J. Physiol. Pharmacol. 84(12), 1267–1273 (2006)PubMedCrossRefGoogle Scholar
  122. 122.
    Meerwaldt R., Graaff R., Oomen P.H.N., Links T.P., Jager J.J., Alderson N.L., Thorpe S.R., Baynes J.W., Gans R.O.B., Smit A.J.: Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 47(7), 1324–1330 (2004)PubMedCrossRefGoogle Scholar
  123. 123.
    West B.J., Uwaya A., Isami F., Deng S., Nakajima S., Jensen C.J.: Antiglycation activity of iridoids and their food sources. Int. J. Food Sci. 2014, article ID 276950 (2014)CrossRefGoogle Scholar
  124. 124.
    Cerami C., Founds H., Nicholl I., Mitsuhashi T., Giordano D., Vanpatten S., Lee A., Al-Abed Y., Vlassara H., Bucala R., Cerami A.: Tobacco smoke is a source of toxic reactive glycation products. Proc. Nat. Acad. Sci. U.S.A. 94(25), 13915–13920 (1997)CrossRefGoogle Scholar
  125. 125.
    Ambrose J.A., Barua R.S.: The pathophysiology of cigarette smoking and cardiovascular disease: an update. J. Am. Coll. Cardiol. 43(10), 1731–1737 (2004)PubMedCrossRefGoogle Scholar
  126. 126.
    Reynolds P.R., Kasteler S.D., Schmitt R.E., Hoidal J.R.: Receptor for advanced glycation end-products signals through Ras during tobacco smoke-induced pulmonary inflammation. Am. J. Respir. Cell Mol. Biol. 45(2), 411–418 (2011)PubMedCrossRefGoogle Scholar
  127. 127.
    Ramasamy R.: Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids. 42(4), 1151–1161 (2012)PubMedCrossRefGoogle Scholar
  128. 128.
    Nicholl I.D., Stitt A.W., Moore J.E., Ritchie A.J., Archer D.B., Bucala R.: Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers. Mol. Med. 4(9), 594–601 (1998)PubMedPubMedCentralGoogle Scholar
  129. 129.
    Koetsier M., Lutgers H.L., de Jonge C., Links T.P., Smit A.J., Graaff R.: Reference values of skin autofluorescence. Diabetes Technol. Ther. 12(5), 399–403 (2010)PubMedCrossRefGoogle Scholar
  130. 130.
    Yue X., Hu H., Koetsier M., Graaff R., Han C.: Reference values for the Chinese population of skin autofluorescence as a marker of advanced glycation end products accumulated in tissue. Diabet. Med. 28(7), 818–823 (2011)PubMedCrossRefGoogle Scholar
  131. 131.
    Monami M., Lamanna C., Gori F., Bartalucci F., Marchionni N., Mannucci E.: Skin autofluorescence in type 2 diabetes: beyond blood glucose. Diabetes Res. Clin. Pract. 79(1), 56–60 (2008)PubMedCrossRefGoogle Scholar
  132. 132.
    Sandby-Moller J., Thieden E., Philipsen P.A., Heydenreich J., Wulf H.C.: Skin autofluorescence as a biological UVR dosimeter. Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004)PubMedCrossRefGoogle Scholar
  133. 133.
    Nomoto K., Yagi M., Arita S., Ogura M., Yonei Y.: Skin accumulation of advanced glycation end products and lifestyle behaviors in Japanese. Anti-aging Med. 9(6), 165–173 (2012)Google Scholar
  134. 134.
    Hoonhorst S.J., Lo Tam Loi A.T., Hartman J.E., Telenga E.D., van den Berge M., Koenderman L., Lammers J.W., Marike Boezen H., Postma D.S., Ten Hacken N.H.: Advanced glycation end products in the skin are enhanced in COPD. Metabolism. 63(9), 1149–1156 (2014)PubMedCrossRefGoogle Scholar
  135. 135.
    Gopal P., Reynaert N.L., Scheijen J.L., Engelen L., Schalkwijk C.G., Franssen F.M., Wouters E.F., Rutten E.P.: Plasma advanced glycation end-products and skin autofluorescence are increased in COPD. Eur. Respir. J. 43(2), 430–438 (2014)PubMedCrossRefGoogle Scholar
  136. 136.
    Wang M.Y., Lutfiyya M.N., Weidenbacher-Hoper V., Anderson G., Su C.X., West B.J.: Antioxidant activity of noni juice in heavy smokers. Chem. Cent. J. 3, article ID 13 (2009)CrossRefGoogle Scholar
  137. 137.
    Wang M.Y., Peng L., Jensen C.J., Deng S., West B.J.: Noni juice reduces lipid peroxidation–derived DNA adducts in heavy smokers. Food Sci. Nutr. 1(2), 141–149 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Brownlee M.: Biochemistry and molecular cell biology of diabetic complications. Nature. 414(6865), 913–820 (2001)CrossRefGoogle Scholar
  139. 139.
    Miyata T., Wada Y., Cai Z., Iida Y., Horie K., Yasuda Y., Maeda K., Kurokawa K., van Ypersele de Strihou C.: Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int. 51(4), 1170–1181 (1997)PubMedCrossRefGoogle Scholar
  140. 140.
    Smith P.R., Thornalley P.J.: Mechanism of the degradation of non-enzymatically glycated proteins under physiological conditions. Studies with the model fructosamine, N epsilon-(1-deoxy-D-fructos-1-yl)hippuryl-lysine. Eur. J. Biochem. 210(3), 729–739 (1992)PubMedCrossRefGoogle Scholar
  141. 141.
    Nishikawa T., Edelstein D., Du X.L., Yamagishi S., Matsumura T., Kaneda Y., Yorek M.A., Beebe D., Oates P.J., Hammes H.P., Giardino I., Brownlee M.: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 404(6779), 787–790 (2000)PubMedCrossRefGoogle Scholar
  142. 142.
    Araki E., Nishikawa T.: Oxidative stress: A cause and therapeutic target of diabetic complications. J Diabetes Investig. 1(3), 90–96 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Parzonko A., Czerwińska M.E., Kiss A.K., Naruszewicz M.: Oleuropein and oleacein may restore biological functions of endothelial progenitor cells impaired by angiotensin II via activation of Nrf2/heme oxygenase-1 pathway. Phytomedicine. 20(12), 1088–1094 (2013)PubMedCrossRefGoogle Scholar
  144. 144.
    Koriyama Y., Chiba K., Yamazaki M., Suzuki H., Muramoto K., Kato S.: Long-acting genipin derivative protects retinal ganglion cells from oxidative stress models in vitro and in vivo through the Nrf2/antioxidant response element signaling pathway. J. Neurochem. 115(1), 79–91 (2010)PubMedCrossRefGoogle Scholar
  145. 145.
    Okada K., Shoda J., Kano M., Suzuki S., Ohtake N., Yamamoto M., Takahashi H., Utsunomiya H., Oda K., Sato K., Watanabe A., Ishii T., Itoh K., Yamamoto M., Yokoi T., Yoshizato K., Sugiyama Y., Suzuki H.: Inchinkoto, a herbal medicine, and its ingredients dually exert Mrp2/MRP2-mediated choleresis and Nrf2-mediated antioxidative action in rat livers. Am. J. Physiol. Gastrointest. Liver Physiol. 292(5), G1450–G1463 (2007)PubMedCrossRefGoogle Scholar
  146. 146.
    Gacche R.N., Dhole N.A.: Profile of aldose reductase inhibition, anti-cataract and free radical scavenging activity of selected medicinal plants: an attempt to standardize the botanicals for amelioration of diabetes complications. Food Chem. Toxicol. 49(8), 1806–1813 (2011)PubMedCrossRefGoogle Scholar
  147. 147.
    Lee C.M., Jung H.A., Oh S.H., Park C.H., Tanaka T., Yokozawa T., Choi J.S.: Kinetic and molecular docking studies of loganin and 7-O-galloyl-D-sedoheptulose from Corni Fructus as therapeutic agents for diabetic complications through inhibition of aldose reductase. Arch. Pharm. Res. 38(6), 1090–1098 (2015)PubMedCrossRefGoogle Scholar
  148. 148.
    Akileshwari C., Muthenna P., Nastasijević B., Joksić G., Petrash J.M., Reddy G.B.: : Inhibition of aldose reductase by Gentiana lutea extracts. Exp. Diabetes Res. 2012, article ID 147965 (2012)CrossRefGoogle Scholar
  149. 149.
    Kohda H., Tanaka S., Yamaoka Y., Yahara S., Nohara T., Tanimoto T., Tanaka A.: Studies on lens-aldose-reductase inhibitor in medicinal plants. II. Active constituents of Monochasma savatierii Franch. et Maxim. Chem. Pharm. Bull (Tokyo). 37(11), 3153–3154 (1989)CrossRefGoogle Scholar
  150. 150.
    Edwards J.L., Vincent A.M., Cheng H.T., Feldman E.L.: Diabetic neuropathy: mechanisms to management. Pharmacol. Ther. 120(1), 1–34 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Giacco F., Brownlee M.: Oxidative stress and diabetic complications. Circ. Res. 107(9), 1058–1070 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Levi B., Werman M.J.: Long-term fructose consumption accelerates glycation and several age-related variables in male rats. J. Nutr. 128(9), 1442–1449 (1998)PubMedGoogle Scholar
  153. 153.
    Hori M., Yagi M., Nomoto K., Ichijo R., Shimode A., Kitano T., Yonei Y.: Experimental models for advanced glycation end product formation using albumin, collagen, elastin, keratin and proteoglycan. Anti-Aging Med. 9(5), 125–134 (2012)Google Scholar
  154. 154.
    Kawai T., Takei I., Tokui M., Funae O., Miyamoto K., Tabata M., Hirata T., Saruta T., Shimada A., Itoh H.: Effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy in patients with type 2 diabetes, in relation to suppression of N(ɛ)-carboxymethyl lysine. J. Diabetes Complicat. 24(6), 424–432 (2010)PubMedCrossRefGoogle Scholar
  155. 155.
    Park C.H., Tanaka T., Kim H.Y., Park J.C., Yokozawa T.: Protective Effects of Corni Fructus against Advanced Glycation Endproducts and Radical Scavenging. Evid. Based Complement. Alternat. Med. 2012, article ID 418953 (2012)Google Scholar
  156. 156.
    Ghisalberti E.L.: Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine. 5(2), 147–163 (1998)PubMedCrossRefGoogle Scholar
  157. 157.
    West, B.: Bioactivation of deacetylasperulosidic acid: changes in bioactivity. Proceedings of the 2nd Annual International Iridoid Research Symposium, Provo, Utah, 9–10 August (2011)Google Scholar
  158. 158.
    Ueda S., Iwahashi Y., Tokuda H.: Production of anti-tumor-promoting iridoid glucosides in Genipa americana and its cell cultures. J. Nat. Prod. 54(6), 1677–1680 (1991)PubMedCrossRefGoogle Scholar
  159. 159.
    Huh S.O., Kim J.H., Chang I.M.: Effects of iridoid compounds on RNA and protein biosynthesis in Sarcoma 180 cells. Saengyak Hakhoe Chi. 16(99), 99–104 (1985)Google Scholar
  160. 160.
    Chang I.M.: Antiviral activity of aucubin against hepatitis B virus replication. Phytother. Res. 11(3), 189–195 (1997)CrossRefGoogle Scholar
  161. 161.
    Yamazaki M., Chiba K., Mohri T.: Neuritogenic effect of natural iridoid compounds on PC12h cells and its possible relation to signaling protein kinases. Biol. Pharm. Bull. 19(6), 791–795 (1996)PubMedCrossRefGoogle Scholar
  162. 162.
    Isiguro K., Yamaki M., Takagi S., Ikeda Y., Kawakami K., Ito K., Nose T.: Studies on iridoid-related compounds. IV. Antitumor activity of iridoid aglycones. Chem. Pharm. Bull. (Tokyo). 34(6), 2375–2379 (1986)CrossRefGoogle Scholar
  163. 163.
    Takino J., Nagamine K., Hori T., Sakasai-Sakai A., Takeuchi M.: Contribution of the toxic advanced glycation end-products-receptor axis in nonalcoholic steatohepatitis-related hepatocellular carcinoma. World J. Hepatol. 7(23), 2459–2469 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Pertynska-Marczewska M., Diamanti-Kandarakis E., Zhang J., Merhi Z.: Advanced glycation end products: A link between metabolic and endothelial dysfunction in polycystic ovary syndrome? Metabolism. 64(11), 1564–1573 (2015)PubMedCrossRefGoogle Scholar
  165. 165.
    Malik P., Chaudhry N., Mittal R., Mukherjee T.K.: Role of receptor for advanced glycation end products in the complication and progression of various types of cancers. Biochim. Biophys. Acta. 1850(9), 1898–1904 (2015)PubMedCrossRefGoogle Scholar
  166. 166.
    Kouidrat Y., Amad A., Arai M., Miyashita M., Lalau J.D., Loas G., Itokawa M.: Advanced glycation end products and schizophrenia: A systematic review. J. Psychiatr. Res. 66-67, 112–117 (2015)PubMedCrossRefGoogle Scholar
  167. 167.
    Angeloni C., Zambonin L., Hrelia S.: Role of methylglyoxal in Alzheimer's disease. Biomed. Res. Int. 2014, article ID 238485 (2014)Google Scholar
  168. 168.
    Prasad C., Imrhan V., Marotta F., Juma S., Vijayagopal P.: Lifestyle and Advanced Glycation End Products (AGEs) Burden: Its Relevance to Healthy Aging. Aging. Dis. 5(3), 212–217 (2014)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Brett J. West
    • 1
  • Shixin Deng
    • 1
  • Akemi Uwaya
    • 1
  • Fumiyuki Isami
    • 1
  • Yumi Abe
    • 2
  • Sho-ichi Yamagishi
    • 3
  • C. Jarakae Jensen
    • 1
  1. 1.Research and Development, Morinda, Inc.American ForkUSA
  2. 2.Anti-Aging Medical Research Center and Glycation Stress Research CenterDoshisha UniversityKyotoJapan
  3. 3.Kurume University School of MedicineKurumeJapan

Personalised recommendations