Advertisement

Glycoconjugate Journal

, Volume 33, Issue 5, pp 819–836 | Cite as

Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans and related structures

  • E.V. Chandrasekaran
  • Jun Xue
  • Jie Xia
  • Siraj D. Khaja
  • Conrad F. Piskorz
  • Robert D. Locke
  • Sriram Neelamegham
  • Khushi L. Matta
Original Article

Abstract

Plant lectins through their multivalent quaternary structures bind intrinsically flexible oligosaccharides. They recognize fine structural differences in carbohydrates and interact with different sequences in mucin core 2 or complex-type N-glycan chain and also in healthy and malignant tissues. They are used in characterizing cellular and extracellular glycoconjugates modified in pathological processes. We study here, the complex carbohydrate-lectin interactions by determining the effects of substituents in mucin core 2 tetrasaccharide Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-O-R and fetuin glycopeptides on their binding to agarose-immobilized lectins PNA, RCA-I, SNA-I and WGA. Briefly, in mucin core 2 tetrasaccharide (i) structures modified by α2-3/6-Sialyl LacNAc, LewisX and α1-3-Galactosyl LacNAc resulted in regular binding to PNA whereas compounds with 6-sulfo LacNAc displayed no-binding; (ii) strucures bearing α2-6-sialyl 6-sulfo LacNAc, or 6-sialyl LacdiNAc carbohydrates displayed strong binding to SNA-I; (iii) structures with α2-3/6-sialyl, α1-3Gal LacNAc or LewisX were non-binder to RCA-I and compounds with 6-sulfo LacNAc only displayed weak binding; (iv) structures containing LewisX, 6-Sulfo LewisX, α2-3/6-sialyl LacNAc, α2-3/6-sialyl 6-sulfo LacNAc and GalNAc Lewis-a were non-binding to WGA, those with α1-2Fucosyl, α1-3-Galactosyl LacNAc, α2-3-sialyl T-hapten plus 3ʹ/6ʹsulfo LacNAc displayed weak binding, and compounds with α2-3-sialyl T-hapten, α2.6-Sialyl LacdiNAc, α2-3-sialyl D-Fucβ1-3 GalNAc and Fucα-1-2 D-Fucβ-1-3GalNAc displaying regular binding and GalNAc LewisX and LacdiNAc plus D-Fuc β-1-3 GalNAcα resulting in tight binding. RCA-I binds Fetuin triantennary asialoglycopeptide 100 % after α-2-3 and 25 % after α-2-6 sialylation, 30 % after α-1-2 and 100 % after α-1-3 fucosylation, and 50 % after α-1-3 galactosylation. WGA binds 3-but not 6-Fucosyl chitobiose core. Thus, information on the influence of complex carbohydrate chain constituents on lectin binding is apparently essential for the potential application of lectins in glycoconjugate research.

Keywords

Plant lectins Binding specificities Complex glycans Mucin core-2 compounds N-linked glycans Carbohydrate chain constituents 

Abbreviations

AA/CP

Acrylyamide copolymer

AAL

Aleuria aurantia lectin

Al

Allyl

Bn

Benzyl

BGA

Blood group antigen

BSA

Bovine serum albumin

BSM

Bovine submaxillary mucin

CGM

Cowper’s gland mucin

CMP

Cytidine 5′ monophosphate

FOG

Fetuin O-glycosidic

FTA

Fetuin triantennary

GP

Glycopeptide

LacNAc

Galβ1, 4GlcNAc

Me

Methyl

Mucin Core 2

Galβ1-3(GlcNAcβ1-6)GalNAcα-o-Ser/Thr

PGM

Pig gastric mucin

PNA

Peanut agglutinin

RCA-I

Ricinus communis agglutinin-I

SNA-I

Sambucus nigra agglutinin-I

ST

Sialyltransferase

T-hapten

Galβ1-3GalNAcα-O-Ser/Thr

Tn-hapten

GalNAcα-O-Ser/Thr

WGA

Wheat germ agglutinin

Notes

Acknowledgments

The study was supported by NIH Grants CA 35329; HL103411 and DOD grant W81XWH-06-1-0013.

References

  1. 1.
    Sharon N., Lis H.: Legume lectins- a large family of homologous proteins. FASEB J. 4, 3198–3208 (1990)PubMedGoogle Scholar
  2. 2.
    Gershoni J.: Protein blotting: a manual. Methods Biochem. Anal. 33, 1–58 (1988)CrossRefPubMedGoogle Scholar
  3. 3.
    Spiier S.S., Schulte B.A.: Diversity of cell glycoconjugates shown histochemically: a perspective. J. Histochem. Cytochem. 40, 1–38 (1992)CrossRefGoogle Scholar
  4. 4.
    Kilpatrick D.C., Green C.: Lectins as blood typing reagents. Adv. Lectin Res. 5, 51–94 (1992)Google Scholar
  5. 5.
    Osawa T., Tsuji T.: Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Ann. Rev. Biochem. 56, 21–42 (1987)CrossRefPubMedGoogle Scholar
  6. 6.
    Debray H., Montreuil J.: Lectin affinity chromatography of glycoconjugates. Adv. Lectin Res. 4, 51–96 (1991)CrossRefGoogle Scholar
  7. 7.
    Sato S., Animashaun T., Hughes R.C.: Carbohydrate-binding specificity of Tetracarpidium conophorum lectin. J. Biol. Chem. 266, 11485–11404 (1991)PubMedGoogle Scholar
  8. 8.
    Yamashita K., Totani K., Ohkura T., Takasaki S., Goldstein I.J., Kobats A.: Carbohydrate binding properties of complex-type oligosaccharides on Datura stramonium lectin. J. Biol. Chem. 262, 1602–1607 (1987)PubMedGoogle Scholar
  9. 9.
    Green E.D., Baenziger J.U.: Oligosaccharide specificity of Phaseolus vulgaris leukoagglutinating and erythroagglutinating phytohemagglutinins interactions with N-glycanase-released oligosaccharides. J. Biol. Chem. 262, 12018–12029 (1987)PubMedGoogle Scholar
  10. 10.
    Merkle R.K., Cummings R.D.: Lectin affinity chromatography of glycopeptides. Methods Enzymol. 138, 232–259 (1987)CrossRefPubMedGoogle Scholar
  11. 11.
    Léger D., Campion B., Decottignies J.-P., Montreuil J., Spik G.: Physiological significance of the marked increased branching of the glycans of human serotransferrin during pregnancy. Biochem. J. 257, 231–238 (1989)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sharma V., Surolia A.: Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. J. Mol. Biol. 267, 433–445 (1997)CrossRefPubMedGoogle Scholar
  13. 13.
    Sharma V., Srinivas V.R., Adhikari P., Vijayan M.: And Surolia a: molecular basis of recognition by Gal/GalNAc specific legume lectins: influence of Glu 129 on the specificity of peanut agglutinin (PNA) towards C2-substituents of galactose. Glycobiology. 8, 1007–1012 (1998)Google Scholar
  14. 14.
    Yim M., Ono T., Irmura T.: Mutated plant lectin library useful to identify different cells. Proc. Natl. Acad. Sci. U. S. A. 98, 2222–2225 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Varki A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 3, 97–130 (1993)CrossRefPubMedGoogle Scholar
  16. 16.
    Pocheć E , Lityńska A , Amoresano A and Casbarra A: Glycosylation profile of integrin alpha 3 beta 1 changes with melanoma progression. Biochim. Biophys. Acta, 1643: 113–123 (2003).CrossRefPubMedGoogle Scholar
  17. 17.
    Cummings, R.D. Plant lectins. In: Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G., Marth, J. (eds.) Essentials of glycobiology. Cold Spring Harbor, pp. 455–467. Cold Spring Harbor Laboratory Press, N.Y. (1999)Google Scholar
  18. 18.
    Yue T., Brian B., Haab B.B.: Microarrays in glycoproteomics research. Clin. Lab. Med. 29, 15–29 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Porter A, Yue T, Heeringa L, Day S, Suh E, and Haab, B. B: A motif-based analysis of glycan array data to determine the specificities of glycan-binding proteins. Glycobiology, 20: 369–380 (2010).Google Scholar
  20. 20.
    Hirabayashi J.: Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj. J. 21, 35–40 (2004)CrossRefPubMedGoogle Scholar
  21. 21.
    Pilobello K.T., Krishnamoorthy L., Slawek D., Mahal L.K.: : development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem. 6, 985–989 (2005)CrossRefPubMedGoogle Scholar
  22. 22.
    Manimala J.C., Roach T.A., Li Z., Gildersleeve J.C.: High-throughput carbohydrate microarray analysis of 24 lectins. Angew. Chem. Int. Ed. 45, 3607–3610 (2006)CrossRefGoogle Scholar
  23. 23.
    Angeloni S., Ridet J.L., Kusy N., Gao H., Crevoisier F., Guinchard S., Kochhar S., Sigrist H., Sprenger N.: Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology. 15, 31–41 (2005)CrossRefPubMedGoogle Scholar
  24. 24.
    Etxebarria J., Calvo J.: Martin-Lomas M and ReichardtN-C: lectin-array blotting: profiling protein glycosylation in complex mixtures. ACS Chem. Biol. 7, 1729–1737 (2012)CrossRefPubMedGoogle Scholar
  25. 25.
    Li C., Simeone D.M., Brenner D.E., Anderson M.A., Shedden K.A., Ruffin M.T., Lubman D.M.: Pancreatic cancer serum detection using a lectin/glyco-antibody array method. J. Proteome Res. 8, 483–492 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bird-Lieberman E.L., Neves A.A., Lao-Sirieix P., O’Donovan M., Novelli M., Lovat L.B., Eng W.S., Mahal L.K., Brindle K.M., Fitzgerald R.C.: Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat. Med. 18, 315–332 (2012)CrossRefPubMedGoogle Scholar
  27. 27.
    Chandrasekaran E.V., Xue J., Xia J., Chawda R., Piskorz C., Locke R.D., Neelamegham S., Matta K.L.: Analysis of the Specificity of Sialytransferases toward Mucin Core 2, Globo, and Related Structures. Identification of the Sialylation Sequence and the Effects of Sulfate, Fucose, Methyl, and Fluoro Substiuents of the Carbohydrate Chain in the Biosynthesis of Selectin and Siglec Ligands, and Novel Sialylation by Cloned 2, 3(O) Sialyltransferase. Biochemistry. 44, 15619–15635 (2005)CrossRefPubMedGoogle Scholar
  28. 28.
    Jain, R. K, Piskorz, C. F, Chandrasekaran E.V. , Matta, K. L: Synthesis of gal-β1-(1 → 4)-GlcNAc-β-(1 → 6)-[gal-β-(1 → 3)]-GalNAc-α-Obn oligosaccharides bearing O-methyl or O-sulfo groups at C-3 of the gal residue: specific acceptors for gal: 3-O-sulfotransferases. Glycoconj. J., 15:951–959(1998).Google Scholar
  29. 29.
    Jain R.K., Piskorz C.F., Huang B.G., Locke R.D., Han H.L., Koenig A., Varki A., Matta K.L.: Inhibition of L- and P-selectin by a rationally synthesized novel Core 2-like branched structure containing GalNAc-Lewisx and Neu5Acα2–3Galβ1–3GalNAc sequences. Glycobiology. 8, 707–717 (1998)CrossRefPubMedGoogle Scholar
  30. 30.
    Xia J., Alderfer J.L., Srikrishnan T., Chandrasekaran E.V., Matta K.: L: a convergent synthesis of core-2 branched sialylated and sulfated oligosaccharides. Bioorg. Med. Chem. 10, 3673–3684 (2002)CrossRefPubMedGoogle Scholar
  31. 31.
    Xia J., Alderfer J.L., Piskorz C.F., Locke R.D., Matta K.L.: Synthesis of fluorine-containing core-2 tetrasaccharides. Synlett. 9, 1291–1294 (2003)Google Scholar
  32. 32.
    Xue, J ; Kumar, V ; Khaja, S. D.; Chandrasekaran, E.V. ; Locke, R. D. ; Matta, K. L: Syntheses of fluorine-containing mucin core 2/core 6 structures using novel fluorinated glucosaminyl donors. Tetrahedron, 65: 8325–8335 (2009).CrossRefGoogle Scholar
  33. 33.
    Chandrasekaran E.V., Jain R.K., Larsen R.D., Wlasichuk K., Matta K.L.: Selectin-ligands and tumor associated carbohydrate structures: specificities of α2,3-sialyltransferases in the assembly of 3′-sialyl, 6-sulfo/sialyl Lewis a and x, 3′-sialyl, 6′-sulfo Lewis x and 3′-sialyl, 6-sialyl/sulfo blood group T-hapten. Biochemistry. 34, 2925–2936 (1995)CrossRefPubMedGoogle Scholar
  34. 34.
    Chandrasekaran E.V., Jain R.K., Vig R., Matta K.L.: The enzymatic sulfation of glycoprotein carbohydrate units: blood group T-hapten specific and two other distinct gal:3-O-sulfotransferases as evident from specificities and kinetics and the influence of sulfate and fucose residues occurring in the carbohydrate chain and on C-3 sulfation of terminal gal. Glycobiology. 7, 753–768 (1997)CrossRefPubMedGoogle Scholar
  35. 35.
    Chandrasekaran E.V., Xue J., Xia J., Locke R.D., Matta K.L., Neelamegham S.: Reversible sialylation: Synthesis of cytidine 5′-monophospho-N-acetylneuraminic acid from cytidine 5′-monophosphate with 2, 3-sialyl o-glycan-, glycolipid-, and macromolecule-based donors yields diverse sialylated products. Biochemistry. 47, 320–330 (2008)CrossRefPubMedGoogle Scholar
  36. 36.
    Van Damme E.J.M., Barre A., Rouge P., Leuven F., Peumans W.J.: The NeuAc(alpha-2,6)Gal/GalNAc-binding lectin from elderberry (Sambucus Nigra) bark, a type-2 ribosome-inactivating protein with an unusual specificity and structure. Eur. J. Biochem. 235, 128–137 (1996)CrossRefPubMedGoogle Scholar
  37. 37.
    Xue J., Song L., Khaja D.S., Locke D.R., West C.M., Laine R.A., Matta K.L.: Determination of linkage position and anomeric configuration in hex-fuc disaccharides using electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18, 1947–1955 (2004)CrossRefPubMedGoogle Scholar
  38. 38.
    Chandrasekaran E.V., Chawda R., Locke R.D., Piskorz C.F., Matta K.L.: Biosynthesis of the carbohydrate antigenic determinants, Globo H, blood group H, and Lewis b: a role for prostate cancer cell alpha1,2-L-fucosyltransferase. Glycobiology. 12, 153–162 (2002)CrossRefPubMedGoogle Scholar
  39. 39.
    Chandrasekaran E.V., Jain R.K., Larsen R.D., Wlasichuk K., DiCioccio R.A., Matta K.L.: Specificity analysis of three clonal and five non-clonal R1,3-L-fucosyltransferases with sulfated, sialylated, or fucosylated synthetic carbohydrates as acceptors in relation to the assembly of 3′-sialyl-6′-sulfo Lewis x (the L-selectin ligand) and related complex structures. Biochemistry. 35, 8925–8933 (1996)CrossRefPubMedGoogle Scholar
  40. 40.
    Chandrasekaran E.V., Chawda R., Rhodes J.M., Xia J., Piskorz C., Matta K. L.: Human lung adenocarcinoma α1,3/4-L-fucosyltransferase displays two molecular forms, high substrate affinity for clustered sialyl LacNAc type 1 units as well as mucin core 2 sialyl LacNAc type 2 unit and novel α1,2-L-fucosylating activity. Glycobiology. 11, 353–363 (2001)CrossRefPubMedGoogle Scholar
  41. 41.
    Chandrasekaran E.V., Xue J., Neelamegham S., Matta K.L.: The pattern of glycosyl- and sulfotransferase activities in cancer cell lines: a predictor of individual cancer-associated distinct carbohydrate structures for the structural identification of signature glycans. Carbohydr. Res. 341, 983–994 (2006)CrossRefPubMedGoogle Scholar
  42. 42.
    Chandrasekaran E.V., Jain R.K., Larsen R.D., Wlasichuk K., Matta K. L.: Characterization of the specificities of human blood group H gene-specified α1, 2-l-fucosyltransferase toward sulfated/sialylated/fucosylated acceptors: evidence for an inverse relationship between α1, 2-l-fucosylation of gal and α1, 6-l-fucosylation of asparagine-linked GlcNAc. Biochemistry. 35, 8914–8924 (1996)CrossRefPubMedGoogle Scholar
  43. 43.
    Chandrasekaran E.V., Chawda R., Rhodes J.M., Locke R.D., Piskorz C.F., Matta K.L.: The binding characteristics and utilization of Aleuria aurantia. Lens culinaris and few other lectins in the elucidation of fucosyltransferase activities resembling cloned FT VI and apparently unique to colon cancer cells. Carbohydr Res. 338, 887–901 (2003)PubMedGoogle Scholar
  44. 44.
    Lotan R., Skutelsky E., Danon D., Sharon N.: The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem. 250, 8518–8523 (1975)PubMedGoogle Scholar
  45. 45.
    Chen Y., Jain R.K., Chandrasekharan E.V., Matta K.L.: Use of sialylated or sulfated derivatives and acrylamide copolymers of Galbeta 1, 3Ga1NAc alpha- and GaINAc alpha- to determine the specificities of blood group T- and Tn—specific lectins and the copolymers to measure anit-T and anti-Tn antibody levels in cancer patients. Glycoconjucate J. 12, 55–62 (1995)CrossRefGoogle Scholar
  46. 46.
    Chacko B.K., Appukuttan P.S.: Peanut (Arachis hypogaea) lectin recognizes α-linked galactose, but not N-acetyl lactosamine in N-linked oligosaccharide terminals. Intl. J. Biol. Macromol. 28, 365–371 (2001)CrossRefGoogle Scholar
  47. 47.
    Iskratsch T., Braun A., Paschinger K., Wilson I.B.H.: Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal. Biochem. 386, 133–146 (2009)CrossRefPubMedGoogle Scholar
  48. 48.
    Cholleti S.R., Agravat S., Morris T., Saltz J.H., Song X., Cummings R.D., Smith D.F.: Automated motif discovery from glycan array data. OMICS: A Journal of Integrative Biology. 16, 10 (2012)Google Scholar
  49. 49.
    Sharma V., Vijayan M., Surolia A.: Imparting exquisite specificity to peanut agglutinin for the tumor-associated Thomsen-Friedenreich antigen by redesign of its combining site. J. Biol. Chem. 271, 21209–21213 (1996)CrossRefPubMedGoogle Scholar
  50. 50.
    Debray H., Decout D., Strecker G., Spik G., Montreuil J.: Specificity of twelve lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur. J. Biochem. 117, 41–55 (1981)CrossRefPubMedGoogle Scholar
  51. 51.
    Baenziger J.U., Fiete D.: Structural determinants of Ricinus Communis agglutinin and toxin specificity for oligosaccharides. J. Biol. Chem. 254, 9795–9799 (1979)PubMedGoogle Scholar
  52. 52.
    Surolia A., Ahmad A., Bachhawat B. K.: Affinity chromatography of galactose containing biopolymers using covalently coupled Ricinus Communis lectin to Sepharose 4B. Biochim. Biophys. Acta. 404, 83–92 (1975)CrossRefPubMedGoogle Scholar
  53. 53.
    Green E.D., Brodbeck R.M., Baenziger J.U.: Lectin affinity high-performance liquid chromatography: interactions of N-glycanase-released oligosaccharides with Ricinus communis agglutinin I and Ricinus communis agglutinin II. J. Biol. Chem. 262, 12030–12039 (1987)PubMedGoogle Scholar
  54. 54.
    Itakura Y., Nakamura-Tsuruta S., Kominami J., Sharon N., Kasai K., Hirabayashi J.: Systematic comparison of oligosaccharide specificity of Ricinus communis agglutinin I and Erythrina lectins: a search by frontal affinity chromatography. J. Biochem. (Tokyo). 142(459–467), (2007)Google Scholar
  55. 55.
    Shibuya N., Goldstein I.J., Broekaert W.F., Nsimba-Lubaki M., Peeters B., Peumans W.J.: The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac (alpha 2–6) Gal/GalNAc sequence. J. Biol. Chem. 262, 1596–1601 (1987)PubMedGoogle Scholar
  56. 56.
    Haseley S.R., Talaga P., Kamerling J.P., Vliegenthart J.F.: : Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface Plasmon resonance. Anal. Biochem. 274, 203–210 (1999)CrossRefPubMedGoogle Scholar
  57. 57.
    Brinkman-Van der Linden E.C.M., Sonnenburg J.L., Varki A.: Effects of sialic acid substitutions on recognition by Sambucus nigra Agglutinin and Maackia amurensis hemagglutinin. Anal. Biochem. 303, 98–104 (2002)CrossRefGoogle Scholar
  58. 58.
    Johansson L., Johansson P., Miller-Podraza H.: Detection by the lectins from Maackia amurensis and Sambucus nigra of 3- and 6-linked sialic acid in gangliosides with neolacto chains separated on thin-layer chromatograms and blotted to PVDF membranes. Anal. Biochem. 267, 239–241 (1999)CrossRefPubMedGoogle Scholar
  59. 59.
    Allen A.K., Neuberger A., Sharon N.: The purification, composition and specificity of wheat-germ agglutinin. Biochem. J. 131, 155–162 (1973)CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Goldstein I.J., Hammarström S., Sundblad G.: Precipitation and carbohydrate-binding specificity studies on wheat germ agglutinin. Biochim. Biophys. Acta. 405, 53–61 (1975)Google Scholar
  61. 61.
    Monsigny M., Delmotte F., Hélène C.: Ligands containing heavy atoms: perturbation of phosphorescence of a tryptophan residue in the binding site of wheat germ agglutinin. Proc. Natl. Acad. Sci. U. S. A. 75, 1324–1328 (1978)CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bhavanandan V.P., Katlic A.W.: The interaction of wheat germ agglutinin with sialoglycoproteins: The role of sialic acid. J. Biol. Chem. 254, 4000–4008 (1979)PubMedGoogle Scholar
  63. 63.
    Peters B.P., Ebisu S., Irwin J., Goldstein I.J., Flashner M.: Interaction of wheat germ agglutinin with sialic acid. Biochemistry. 18, 5505–5511 (1979)CrossRefPubMedGoogle Scholar
  64. 64.
    Monsigny M., Roche A.-C., Sene C., Maget-Dana R., Delmotte F.: Sugar-lectin interactions: how does wheat germ agglutinin bind sialoglycoconjugates. Eur. J. Biochem. 104, 147–153 (1980)CrossRefPubMedGoogle Scholar
  65. 65.
    Kronis K.A., Carver J.P.: Specificity of isolectins of wheat germ agglutinin for sialyloligosaccharides: a 360-MHz proton nuclear magnetic resonance binding study. Biochemistry. 21, 3050–3057 (1982)CrossRefPubMedGoogle Scholar
  66. 66.
    Yamamoto K., Tsuji T., Matsumoto I., Osawa T.: Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin. Biochemistry. 20, 5894–5589 (1981)CrossRefPubMedGoogle Scholar
  67. 67.
    Xuan P., Zhang Y., Tzeng T-R J., Wan X.-F., Luo F.: A quantitative structure–activity relationship (QSAR) study on glycan array data to determine the specificities of glycan-binding proteins. Glycobiology. 22, 552–560 (2012)CrossRefPubMedGoogle Scholar
  68. 68.
    Bouckaert J., Hamelryck T., Wyns L., Loris R.: Novel structures of plant lectins and their complexes with carbohydrates. Curr. Opin. Struct. Biol. 9, 572–577 (1999)CrossRefPubMedGoogle Scholar
  69. 69.
    Kuno A., Uchiyama N., Koseki-Kuno S., Ebe Y., Takashima S., Yamada M., Hirabayashi J.: Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat. Methods. 2, 851–856 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E.V. Chandrasekaran
    • 1
  • Jun Xue
    • 1
  • Jie Xia
    • 1
  • Siraj D. Khaja
    • 1
  • Conrad F. Piskorz
    • 1
  • Robert D. Locke
    • 1
  • Sriram Neelamegham
    • 2
  • Khushi L. Matta
    • 1
    • 2
  1. 1.Department of Cancer BiologyRoswell Park Cancer InstituteBuffaloUSA
  2. 2.Department of Chemical and Biological EngineeringState University of New YorkBuffaloUSA

Personalised recommendations