Glycoconjugate Journal

, Volume 33, Issue 5, pp 763–777 | Cite as

Synthetic arabinomannan glycolipids impede mycobacterial growth, sliding motility and biofilm structure

  • Kirtimaan Syal
  • Krishnagopal Maiti
  • Kottari Naresh
  • Prakash Gouda Avaji
  • Dipankar Chatterji
  • Narayanaswamy Jayaraman
Original Article


Mycobacterium has evolved distinct cell wall and strategies such as biofilm formation, which helps it to survive in hostile conditions. We have reported previously that arabinofuranoside containing glycolipids exhibit inhibition activities against the above functions of the mycobacterial species M. smegmatis. In search for activities mediated by oligosaccharide glycolipids, we report herein the inhibitory activities of a linear and a branched pentasaccharides having arabinan and mannan moieties. In the presence of the pentasaccharide glycolipids, a significant reduction in mycobacterial growth is observed, concomitant with reductions in sliding motility and colonization through biofilm formation, at the optimal glycolipid concentrations of 50–100 μg mL−1. Especially the biofilm coat is ruptured by ~80–85 % in the presence of glycolipids. Pentasaccharides alone without the lipidic chain show only a weak effect. The glycolipids are non-toxic, as evaluated through their effect on RBCs. Analysis of the mycolic acid profile of glycolipid treated biofilm shows that α- and epoxy mycolic acids are downregulated significantly, in comparison to glycolipid untreated biofilms. Lipidomics profile analysis through mass spectrometry further reveals profound downregulation of phosphatidylinositol mannosides, acylatedphosphoglycerols and mycolic acid family, namely, keto-, alpha- and methoxymycolic acids.


Biofilms Glycolipids Mycobacteria Oligosaccharides Sliding motility 





Electrospray ionization


Red blood cells






Optical density


Phosphate-buffered saline


Sodium dodecyl sulphate


Fatty acid methyl ester


Mycolic acid methyl ester



We are grateful to the Department of Science and Technology, New Delhi, for a financial support of this work. Council of Scientific and Industrial Research, New Delhi, is acknowledged for a research fellowship to KS and KGM. We thank Rajesh from Brukers and Sunita from Proteomics Facility, IISc, for help in the analysis of lipids.

Supplementary material

10719_2016_9670_MOESM1_ESM.pdf (2.3 mb)
ESM 1 (PDF 2324 kb)


  1. 1.
    Aujoulat, F., Roger, F., Bourdier, A., Lotthé, A., Lamy, B., Marchandin, H., Jumas-Bilak, E.: From environment to man: genome evolution and adaptation of human opportunistic bacterial pathogens. Genes 3(2), 191 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    WHO report: WHO/HTM/TB/2009.411. World Health Organization, Geneva (2009)Google Scholar
  3. 3.
    Bassetti, M., Righi, E.: Multidrug-resistant bacteria: what is the threat? ASH Education Program Book. (1), 428–432 (2013)Google Scholar
  4. 4.
    Syal, K., Maiti, K., Naresh, K., Chatterji, D., Jayaraman, N.: Synthetic glycolipids and (p)ppGpp analogs: development of inhibitors for mycobacterial growth, biofilm and stringent response. Adv. Exp. Med. Biol. 842, 309–327 (2015)PubMedCrossRefGoogle Scholar
  5. 5.
    Alderwick, L.J., Harrison, J., Lloyd, G.S., Birch, H.L.: The mycobacterial cell wall-peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect. Med. (2015)Google Scholar
  6. 6.
    Daffe, M., Draper, P.: The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1998)PubMedCrossRefGoogle Scholar
  7. 7.
    Daffe, M.: The cell envelope of tubercle bacilli. Tuberculosis (Edinb) (2015). doi: 10.1016/ Google Scholar
  8. 8.
    Schorey, J.S., Sweet, L.: The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 18(11), 832–841 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Branda, S.S., Vik, S., Friedman, L., Kolter, R.: Biofilms: the matrix revisited. Trends Microbiol. 13(1), 20–26 (2005)PubMedCrossRefGoogle Scholar
  10. 10.
    Penesyan, A., Gillings, M., Paulsen, I.T.: Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20(4), 5286–5298 (2015)PubMedCrossRefGoogle Scholar
  11. 11.
    Bahar, A.A., Liu, Z., Garafalo, M., Kallenbach, N., Ren, D.: Controlling persister and biofilm cells of gram-negative bacteria with a new 1,3,5-triazine derivative. Pharm. (Basel) 8(4), 696–710 (2015)CrossRefGoogle Scholar
  12. 12.
    Sharma, I.M., Petchiappan, A., Chatterji, D.: Quorum sensing and biofilm formation in mycobacteria: role of c-di-GMP and methods to study this second messenger. IUBMB Life 66(12), 823–834 (2014)PubMedCrossRefGoogle Scholar
  13. 13.
    Chavez de Paz, L.E., Lemos, J.A., Wickstrom, C., Sedgley, C.M.: Role of (p)ppGpp in biofilm formation by Enterococcus faecalis. Appl. Environ. Microbiol. 78(5), 1627–1630 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cotter, P.A., Stibitz, S.: c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 10(1), 17–23 (2007)PubMedCrossRefGoogle Scholar
  15. 15.
    Karaolis, D.K., Rashid, M.H., Chythanya, R., Luo, W., Hyodo, M., Hayakawa, Y.: c-di-GMP (3′-5′-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob. Agents Chemother. 49(3), 1029–1038 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Syal, K., Joshi, H., Chatterji, D., Jain, V.: Novel pppGpp binding site at the C‐terminal region of the Rel enzyme from Mycobacterium smegmatis. FEBS J. 282(19), 3773–3785 (2015)PubMedCrossRefGoogle Scholar
  17. 17.
    Syal, K., Chatterji, D.: Differential binding of ppGpp and pppGpp to E. coli RNA polymerase: photo‐labeling and mass spectral studies. Genes Cells 20(12), 1006–1016 (2015)PubMedCrossRefGoogle Scholar
  18. 18.
    Naresh, K., Bharati, B.K., Jayaraman, N., Chatterji, D.: Synthesis and mycobacterial growth inhibition activities of bivalent and monovalent arabinofuranoside containing alkyl glycosides. Org. Biomol. Chem. 6(13), 2388–2393 (2008)PubMedCrossRefGoogle Scholar
  19. 19.
    Naresh, K., Avaji, P.G., Maiti, K., Bharati, B.K., Syal, K., Chatterji, D., Jayaraman, N.: Synthesis of beta-arabinofuranoside glycolipids, studies of their binding to surfactant protein-A and effect on sliding motilities of M. smegmatis. Glycoconj. J. 29(2–3), 107–118 (2012)PubMedCrossRefGoogle Scholar
  20. 20.
    Naresh, K., Bharati, B.K., Avaji, P.G., Chatterji, D., Jayaraman, N.: Synthesis, biological studies of linear and branched arabinofuranoside-containing glycolipids and their interaction with surfactant protein A. Glycobiology 21(9), 1237–1254 (2011)PubMedCrossRefGoogle Scholar
  21. 21.
    Bharati, B.K., Naresh, K., Chatterji, D., Jayaraman, N.: Synthetic arabinan, arabinomannan glycolipids and their effects on mycobacterial growth, sliding motility and biofilm formation. Carbohydr. Chemi. R. Soc. Chem. 39, 58–77 (2013)Google Scholar
  22. 22.
    Naresh, K., Bharati, B.K., Avaji, P.G., Jayaraman, N., Chatterji, D.: Synthetic arabinomannan glycolipids and their effects on growth and motility of the Mycobacterium smegmatis. Org. Biomol. Chem. 8(3), 592–599 (2010)PubMedCrossRefGoogle Scholar
  23. 23.
    Fraser-Reid, B., Lu, J., Jayaprakash, K.N., López, J.C.: Synthesis of a 28-mer oligosaccharide core of Mycobacterial lipoarabinomannan (LAM) requires only two n-pentenyl orthoester progenitors. Tetrahedron Asymmetry 17(17), 2449–2463 (2006)CrossRefGoogle Scholar
  24. 24.
    Holemann, A., Stocker, B.L., Seeberger, P.H.: Synthesis of a core arabinomannan oligosaccharide of Mycobacterium tuberculosis. J. Org. Chem. 71(21), 8071–8088 (2006)PubMedCrossRefGoogle Scholar
  25. 25.
    Ishiwata, A., Ito, Y.: Synthesis of docosasaccharide arabinan motif of mycobacterial cell wall. J. Am. Chem. Soc. 133(7), 2275–2291 (2011)PubMedCrossRefGoogle Scholar
  26. 26.
    Pozsgay, V.: A new strategy in oligosaccharide synthesis using lipophilic protecting groups: synthesis of a tetracosasaccharide. Tetrahedron Asymmetry 11(1), 151–172 (2000)CrossRefGoogle Scholar
  27. 27.
    Crick, D.C., Brennan, P.J.: Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. In: Daffé, M., Reyrat, J.-M. (eds.) The mycobacterial cell envelope, pp. 25–40. ASM Press, Washington, DC (2008)CrossRefGoogle Scholar
  28. 28.
    Schmidt, R.R., Grundler, G.: α-Linked Disaccharides from O-(β-D-Glycopyranosyl) Trichloroacetimidates using Trimethylsilyl Trifluoromethanesulfonate as Catalyst. Angew. Chem. Int. Ed. Engl. 21(10), 781–782 (1982)CrossRefGoogle Scholar
  29. 29.
    Martinez, A., Torello, S., Kolter, R.: Sliding motility in mycobacteria. J. Bacteriol. 181(23), 7331–7338 (1999)PubMedPubMedCentralGoogle Scholar
  30. 30.
    Recht, J., Martinez, A., Torello, S., Kolter, R.: Sliding motility and biofilm formation in mycobacteria. Acta Cient. Venez. 52(Suppl 1), 45–49 (2001)PubMedGoogle Scholar
  31. 31.
    Nessar, R., Reyrat, J.M., Davidson, L.B., Byrd, T.F.: Deletion of the mmpL4b gene in the Mycobacterium abscessus glycopeptidolipid biosynthetic pathway results in loss of surface colonization capability, but enhanced ability to replicate in human macrophages and stimulate their innate immune response. Microbiology 157(Pt 4), 1187–1195 (2011)PubMedCrossRefGoogle Scholar
  32. 32.
    Belisle, J.T., Klaczkiewicz, K., Brennan, P.J., Jacobs Jr., W.R., Inamine, J.M.: Rough morphological variants of Mycobacterium avium. Characterization of genomic deletions resulting in the loss of glycopeptidolipid expression. J. Biol. Chem. 268(14), 10517–10523 (1993)PubMedGoogle Scholar
  33. 33.
    Recht, J., Martinez, A., Torello, S., Kolter, R.: Genetic analysis of sliding motility in Mycobacterium smegmatis. J. Bacteriol. 182(15), 4348–4351 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Recht, J., Kolter, R.: Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J. Bacteriol. 183(19), 5718–5724 (2001)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Beloin, C., Roux, A., Ghigo, J.M.: Escherichia coli biofilms. Curr. Top. Microbiol. Immunol. 322, 249–289 (2008)PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs Jr., W.R., Hatfull, G.F.: GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123(5), 861–873 (2005)PubMedCrossRefGoogle Scholar
  37. 37.
    Ojha, A.K., Baughn, A.D., Sambandan, D., Hsu, T., Trivelli, X., Guerardel, Y., Alahari, A., Kremer, L., Jacobs Jr., W.R., Hatfull, G.F.: Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 69(1), 164–174 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ojha, A.K., Trivelli, X., Guerardel, Y., Kremer, L., Hatfull, G.F.: Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J. Biol. Chem. 285(23), 17380–17389 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Alibaud, L., Alahari, A., Trivelli, X., Ojha, A.K., Hatfull, G.F., Guerardel, Y., Kremer, L.: Temperature-dependent regulation of mycolic acid cyclopropanation in saprophytic mycobacteria: role of the Mycobacterium smegmatis 1351 gene (MSMEG_1351) in CIS-cyclopropanation of alpha-mycolates. J. Biol. Chem. 285(28), 21698–21707 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    40. Maya-Hoyos, M., Leguizamon, J., Marino-Ramirez, L., Soto, C.Y.: Sliding motility, biofilm formation, and glycopeptidolipid production in mycobacterium Colombiense strains. Biomed. Res. Int. 419549, (2015)Google Scholar
  41. 41.
    Fujiwara, N., Ohara, N., Ogawa, M., Maeda, S., Naka, T., Taniguchi, H., Yamamoto, S., Ayata, M.: Glycopeptidolipid of mycobacterium smegmatis J15cs affects morphology and survival in host cells. PLoS One 10(5), e0126813 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Villeneuve, C., Gilleron, M., Maridonneau-Parini, I., Daffe, M., Astarie-Dequeker, C., Etienne, G.: Mycobacteria use their surface-exposed glycolipids to infect human macrophages through a receptor-dependent process. J. Lipid Res. 46(3), 475–483 (2005)PubMedCrossRefGoogle Scholar
  43. 43.
    Richards, J.J., Melander, C.: Controlling bacterial biofilms. Chembiochem 10(14), 2287–2294 (2009)PubMedCrossRefGoogle Scholar
  44. 44.
    Marcinkiewicz, J., Strus, M., Pasich, E.: Antibiotic resistance: a “dark side” of biofilm associated chronic infections. Pol. Arch. Med. Wewn. 123(6), 309–313 (2013)PubMedGoogle Scholar
  45. 45.
    Ehud, A., Shiri, N.-V., Eyal, G., Boris, K., Rivka, G., Daphna, F.-K., Eyal, K., Yehuda, C., Yoav, B.: Novel rat model of methicillin-resistant Staphylococcus aureus-infected silicone breast implants: a study of biofilm pathogenesis. Plast. Reconstr. Surg. 131(2), 205–214 (2013)CrossRefGoogle Scholar
  46. 46.
    Sakamoto, A., Terui, Y., Yamamoto, T., Kasahara, T., Nakamura, M., Tomitori, H., Yamamoto, K., Ishihama, A., Michael, A.J., Igarashi, K., Kashiwagi, K.: Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int. J. Biochem. Cell Biol. 44(11), 1877–1886 (2012)PubMedCrossRefGoogle Scholar
  47. 47.
    Richards, J.P., Ojha, A.K.: Mycobacterial biofilms. Microbiol. Spectrum 2(5), MGM2-0004-2013 (2014)Google Scholar
  48. 48.
    Islam, M.S., Richards, J.P., Ojha, A.K.: Targeting drug tolerance in mycobacteria: a perspective from mycobacterial biofilms. Expert Rev. Anti-Infect. Ther. 10(9), 1055–1066 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Rombouts, Y., Brust, B., Ojha, A.K., Maes, E., Coddeville, B., Elass-Rochard, E., Kremer, L., Guerardel, Y.: Exposure of mycobacteria to cell wall-inhibitory drugs decreases production of arabinoglycerolipid related to mycolyl-arabinogalactan-peptidoglycan metabolism. J. Biol. Chem. 287(14), 11060–11069 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Mathew, R., Mukherjee, R., Balachandar, R., Chatterji, D.: Deletion of the rpoZ gene, encoding the omega subunit of RNA polymerase, results in pleiotropic surface-related phenotypes in Mycobacterium smegmatis. Microbiology 152(Pt 6), 1741–1750 (2006)PubMedCrossRefGoogle Scholar
  51. 51.
    Gidden, J., Denson, J., Liyanage, R., Ivey, D.M., Lay, J.O.: Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry. Int. J. Mass Spectrom. 283(1–3), 178–184 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Riobó, P., Paz, B., Franco, J.M., Vázquez, J.A., Murado, M.A.: Proposal for a simple and sensitive haemolytic assay for palytoxin: toxicological dynamics, kinetics, ouabain inhibition and thermal stability. Harmful Algae 7(4), 415–429 (2008)Google Scholar
  53. 53.
    Krog-Jensen, C., Oscarson, S.: Synthesis of d-fructofuranosides using thioglycosides as glycosyl donors. J. Org. Chem. 61, 1234–1238 (1996) Reference [53] was provided in the reference list; however, this was not mentioned or cited in the manuscript. As a rule, all references given in the list of references should be cited in the main body. Please provide its citation in the body text.The following reorganization of the references is requested:(i) Reference 53 is to be cited as reference 50.(ii) Reference 50 is to be cited as reference 51.(iii) Reference 51 is to be cited as reference 52.(iv) Reference 52 is to be cited as reference 53.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kirtimaan Syal
    • 1
  • Krishnagopal Maiti
    • 2
  • Kottari Naresh
    • 2
  • Prakash Gouda Avaji
    • 2
  • Dipankar Chatterji
    • 1
  • Narayanaswamy Jayaraman
    • 2
  1. 1.Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Organic ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations