Glycoconjugate Journal

, Volume 33, Issue 3, pp 471–482 | Cite as

Site-specific and linkage analyses of fucosylated N-glycans on haptoglobin in sera of patients with various types of cancer: possible implication for the differential diagnosis of cancer

  • Shiro Takahashi
  • Taiki Sugiyama
  • Mayuka Shimomura
  • Yoshihiro Kamada
  • Kazutoshi Fujita
  • Norio Nonomura
  • Eiji Miyoshi
  • Miyako Nakano
Original Article


Fucosylation is an important type of glycosylation involved in cancer, and fucosylated proteins could be employed as cancer biomarkers. Previously, we reported that fucosylated N-glycans on haptoglobin in the sera of patients with pancreatic cancer were increased by lectin-ELISA and mass spectrometry analyses. However, an increase in fucosylated haptoglobin has been reported in various types of cancer. To ascertain if characteristic fucosylation is observed in each cancer type, we undertook site-specific analyses of N-glycans on haptoglobin in the sera of patients with five types of operable gastroenterological cancer (esophageal, gastric, colon, gallbladder, pancreatic), a non-gastroenterological cancer (prostate cancer) and normal controls using ODS column LC-ESI MS. Haptoglobin has four potential glycosylation sites (Asn184, Asn207, Asn211, Asn241). In all cancer samples, monofucosylated N-glycans were significantly increased at all glycosylation sites. Moreover, difucosylated N-glycans were detected at Asn 184, Asn207 and Asn241 only in cancer samples. Remarkable differences in N-glycan structure among cancer types were not observed. We next analyzed N-glycan alditols released from haptoglobin using graphitized carbon column LC-ESI MS to identify the linkage of fucosylation. Lewis-type and core-type fucosylated N-glycans were increased in gastroenterological cancer samples, but only core-type fucosylated N-glycan was relatively increased in prostate cancer samples. In metastatic prostate cancer, Lewis-type fucosylated N-glycan was also increased. These data suggest that the original tissue/cell producing fucosylated haptoglobin is different in each cancer type and linkage of fucosylation might be a clue of primary lesion, thereby enabling a differential diagnosis between gastroenterological cancers and non-gastroenterological cancers.


Fucosylated haptoglobin Gastroenterological cancer Metastatic prostate cancer Linkage of fucose Site-specific analysis 



Liquid chromatography-electrospray ionization-mass spectrometry




Normal volunteers


Esophageal cancer


Gastric cancer


Colon cancer


Pancreatic cancer


Gallbladder cancer


Prostate cancer

Supplementary material

10719_2016_9653_MOESM1_ESM.pdf (336 kb)
ESM 1 (PDF 335 kb)


  1. 1.
    Becker, D.J., Lowe, J.B.: Fucose: biosynthesis and biological function in mammals. Glycobiology 13, 41R–53R (2003)CrossRefPubMedGoogle Scholar
  2. 2.
    Hakomori, S.: Aberrant glycosylation in tumors and tumor-associated carbohydrate antigen. Adv. Cancer Res. 52, 257–331 (1989)CrossRefPubMedGoogle Scholar
  3. 3.
    Miyoshi, E., Moriwaki, K., Nakagawa, T.: Biological function of fucosylation in cancer biology. J. Biochem. 143, 725–729 (2008)CrossRefPubMedGoogle Scholar
  4. 4.
    Dempsey, E., Rudd, P.M.: Acute phase glycoproteins: bystanders or participants in carcinogenesis? Ann. N. Y. Acad. Sci. 1253, 122–132 (2012)CrossRefPubMedGoogle Scholar
  5. 5.
    Okuyama, N., Ide, Y., Nakano, M., Nakagawa, T., Yamanaka, K., Moriwaki, K., Murata, K., Ohigashi, H., Yokoyama, S., Eguchi, H., Ishikawa, O., Ito, T., Kato, M., Kasahara, S., Gu, J., Taniguchi, N., Miyoshi, E.: Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int. J. Cancer 118, 2803–2808 (2006)CrossRefPubMedGoogle Scholar
  6. 6.
    Nakano, M., Nakagawa, T., Ito, T., Kitada, T., Hijioka, T., Kasahara, A., Tajiri, M., Wada, Y., Taniguchi, N., Miyoshi, E.: Site-specific analysis of N-glycans on haptoglobin in sera of patients with pancreatic cancer: a novel approach for the development of tumor markers. Int. J. Cancer 122, 2301–2309 (2008)CrossRefPubMedGoogle Scholar
  7. 7.
    Black, J.A., Chan, G.F., Hew, C.L., Dixon, G.H.: Gene action in the human haptoglobins. III. Isolation of the α-chains as single gene products. Isolation, molecular weight, and amino acid composition of α and β chains. Can. J. Biochem. 48, 123–132 (1970)CrossRefPubMedGoogle Scholar
  8. 8.
    Kurosky, A., Barnett, D.R., Lee, T.H., Touchstone, B., Hay, R.E., Arnott, M.S., Bowman, B.H., Fitch, W.M.: Covalent structure of human haptoglobin: a serine protease homolog. Proc. Natl. Acad. Sci. U. S. A. 77, 3388–3392 (1980)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ferens-Sieczkowska, M., Olczak, M.: Carbohydrate structures of haptoglobin in sera of healthy people and a patient with congenital disorder of glycosylation. Z. Naturforsch. C 56, 122–131 (2001)CrossRefPubMedGoogle Scholar
  10. 10.
    He, Z., Aristoteli, L.P., Kritharides, L., Garner, B.: HPLC analysis of discrete haptoglobin isoform N-linked oligosaccharides following 2D-PAGE isolation. Biochem. Biophys. Res. Commun. 343, 496–503 (2006)CrossRefPubMedGoogle Scholar
  11. 11.
    Noda, K., Miyoshi, E., Gu, J., Gao, C.X., Nakahara, S., Kitada, T., Honke, K., Suzuki, K., Yoshihara, H., Yoshikawa, K., Kawano, K., Tonetti, M., Kasahara, A., Hori, M., Hayashi, N., Taniguchi, N.: Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res. 63, 6282–6289 (2003)PubMedGoogle Scholar
  12. 12.
    Ang, I.L., Poon, T.C., Lai, P.B., Chan, A.T., Ngai, S.M., Hui, A.Y., Johnson, P.J., Sung, J.J.: Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma: a glycoproteomic approach. J. Proteome Res. 5, 2691–700 (2006)CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang, S., Shu, H., Luo, K., Kang, X., Zhang, Y., Lu, H., Liu, Y.: N-linked glycan changes of serum haptoglobin β chain in liver disease patients. Mol. Biosyst. 7, 1621–1628 (2011)CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang, S., Jiang, K., Sun, C., Lu, H., Liu, Y.: Quantitative analysis of site-specific N-glycans on sera haptoglobin β chain in liver diseases. Acta Biochim Biophys Sin (Shanghai) 45, 1021–1029 (2013)CrossRefGoogle Scholar
  15. 15.
    Zhu, J., Lin, Z., Wu, J., Yin, H., Dai, J., Feng, Z., Marrero, J., Lubman, D.M.: Analysis of serum haptoglobin fucosylation in hepatocellular carcinoma and liver cirrhosis of different etiologies. J. Proteome Res. 13, 2986–2997 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hoagland, L.F., Campa, M.J., Gottlin, E.B., Herndon, J.E., Patz, E.F.: Haptoglobin and posttranslational glycan-modified derivatives as serum biomarkers for the diagnosis of nonsmall cell lung cancer. Cancer 110, 2260–2268 (2007)CrossRefPubMedGoogle Scholar
  17. 17.
    Arnold, J.N., Saldova, R., Hamid, U.M., Rudd, P.M.: Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics 8, 3284–3293 (2008)CrossRefPubMedGoogle Scholar
  18. 18.
    Tsai, H.Y., Boonyapranai, K., Sriyam, S., Yu, C.J., Wu, S.W., Khoo, K.H., Phutrakul, S., Chen, S.T.: Glycoproteomics analysis to identify a glycoform on haptoglobin associated with lung cancer. Proteomics 11, 2162–2170 (2011)CrossRefPubMedGoogle Scholar
  19. 19.
    Váradi, C., Mittermayr, S., Szekrényes, Á., Kádas, J., Takacs, L., Kurucz, I., Guttman, A.: Analysis of haptoglobin N-glycome alterations in inflammatory and malignant lung diseases by capillary electrophoresis. Electrophoresis 34, 2287–2294 (2013)CrossRefPubMedGoogle Scholar
  20. 20.
    Zhao, J., Patwa, T.H., Qiu, W., Shedden, K., Hinderer, R., Misek, D.E., Anderson, M.A., Simeone, D.M., Lubman, D.M.: Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. J. Proteome Res. 6, 1864–61874 (2007)CrossRefPubMedGoogle Scholar
  21. 21.
    Matsumoto, H., Shinzaki, S., Narisada, M., Kawamoto, S., Kuwamoto, K., Moriwaki, K., Kanke, F., Satomura, S., Kumada, T., Miyoshi, E.: Clinical application of a lectin-antibody ELISA to measure fucosylated haptoglobin in sera of patients with pancreatic cancer. Clin. Chem. Lab. Med. 48, 505–512 (2010)CrossRefPubMedGoogle Scholar
  22. 22.
    Lin, Z., Simeone, D.M., Anderson, M.A., Brand, R.E., Xie, X., Shedden, K.A., Ruffin, M.T., Lubman, D.M.: Mass spectrometric assay for analysis of haptoglobin fucosylation in pancreatic cancer. J. Proteome Res. 10, 2602–2611 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sarrats, A., Saldova, R., Pla, E., Fort, E., Harvey, D.J., Struwe, W.B., de Llorens, R., Rudd, P.M., Peracaula, R.: Glycosylation of liver acute-phase proteins in pancreatic cancer and chronic pancreatitis. Proteomics Clin. Appl. 4, 432–448 (2010)CrossRefPubMedGoogle Scholar
  24. 24.
    Park, S.Y., Lee, S.H., Kawasaki, N., Itoh, S., Kang, K., Hee Ryu, S., Hashii, N., Kim, J.M., Kim, J.Y., Hoe Kim, J.: α1-3/4 fucosylation at Asn 241 of β-haptoglobin is a novel marker for colon cancer: a combinatorial approach for development of glycan biomarkers. Int. J. Cancer 130, 2366–2376 (2012)CrossRefPubMedGoogle Scholar
  25. 25.
    Takeda, Y., Shinzaki, S., Okudo, K., Moriwaki, K., Murata, K., Miyoshi, E.: Fucosylated haptoglobin is a novel type of cancer biomarker linked to the prognosis after an operation in colorectal cancer. Cancer 118, 3036–3043 (2012)CrossRefPubMedGoogle Scholar
  26. 26.
    Bones, J., Byrne, J.C., O’Donoghue, N., McManus, C., Scaife, C., Boissin, H., Nastase, A., Rudd, P.M.: Glycomic and glycoproteomic analysis of serum from patients with stomach cancer reveals potential markers arising from host defense response mechanisms. J. Proteome Res. 10, 1246–1265 (2011)CrossRefPubMedGoogle Scholar
  27. 27.
    Thompson, S., Dargan, E., Turner, G.A.: Increased fucosylation and other carbohydrate changes in haptoglobin in ovarian cancer. Cancer Lett. 66, 43–48 (1992)CrossRefPubMedGoogle Scholar
  28. 28.
    Turner, G.A., Goodarzi, M.T., Thompson, S.: Glycosylation of alpha-1-proteinase inhibitor and haptoglobin in ovarian cancer: evidence for two different mechanisms. Glycoconj. J. 12, 211–218 (1995)CrossRefPubMedGoogle Scholar
  29. 29.
    Saldova, R., Royle, L., Radcliffe, C.M., Abd Hamid, U.M., Evans, R., Arnold, J.N., Banks, R.E., Hutson, R., Harvey, D.J., Antrobus, R., Petrescu, S.M., Dwek, R.A., Rudd, P.M.: Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology 17, 1344–1356 (2007)CrossRefPubMedGoogle Scholar
  30. 30.
    Fujimura, T., Shinohara, Y., Tissot, B., Pang, P.C., Kurogochi, M., Saito, S., Arai, Y., Sadilek, M., Murayama, K., Dell, A., Nishimura, S., Hakomori, S.: Glycosylation status of haptoglobin in sera of patients with prostate cancer vs. benign prostate disease or normal subjects. Int. J. Cancer 122, 39–49 (2008)CrossRefPubMedGoogle Scholar
  31. 31.
    Yoon, S.J., Park, S.Y., Pang, P.C., Gallagher, J., Gottesman, J.E., Dell, A., Kim, J.H., Hakomori, S.: N-glycosylation status of beta-haptoglobin in sera of patients with prostate cancer vs. benign prostate diseases. Int. J. Oncol. 36, 193–203 (2010)CrossRefPubMedGoogle Scholar
  32. 32.
    Kazuno, S., Fujimura, T., Arai, T., Ueno, T., Nagao, K., Fujime, M., Murayama, K.: Multi-sequential surface plasmon resonance analysis of haptoglobin-lectin complex in sera of patients with malignant and benign prostate diseases. Anal. Biochem. 419, 241–249 (2011)CrossRefPubMedGoogle Scholar
  33. 33.
    Abbott, K.L., Aoki, K., Lim, J.M., Porterfield, M., Johnson, R., O’Regan, R.M., Wells, L., Tiemeyer, M., Pierce, M.: Targeted glycoproteomic identification of biomarkers for human breast carcinoma. J. Proteome Res. 7, 1470–1480 (2008)CrossRefPubMedGoogle Scholar
  34. 34.
    Abd Hamid, U.M., Royle, L., Saldova, R., Radcliffe, C.M., Harvey, D.J., Storr, S.J., Pardo, M., Antrobus, R., Chapman, C.J., Zitzmann, N., Robertson, J.F., Dwek, R.A., Rudd, P.M.: A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology 18, 1105–1118 (2008)CrossRefPubMedGoogle Scholar
  35. 35.
    Wada, Y., Tajiri, M., Yoshida, S.: Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76, 6560–6565 (2004)CrossRefPubMedGoogle Scholar
  36. 36.
    Wilson, N.L., Schulz, B.L., Karlsson, N.G., Packer, N.H.: Sequential analysis of N- and O-linked glycosylation of 2D-PAGE separated glycoproteins. J. Proteome Res. 1, 521–529 (2002)CrossRefPubMedGoogle Scholar
  37. 37.
    Nakano, M., Saldanha, R., Göbel, A., Kavallaris, M., Packer, N.H.: Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells. Mol. Cell. Proteomics (2011). doi: 10.1074/mcp.M111.009001 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Nakagawa, T., Uozumi, N., Nakano, M., Mizuno-Horikawa, Y., Okuyama, N., Taguchi, T., Gu, J., Kondo, A., Taniguchi, N., Miyoshi, E.: Fucosylation of N-glycans regulates the secretion of hepatic glycoproteins into bile ducts. J. Biol. Chem. 281, 29797–29806 (2006)CrossRefPubMedGoogle Scholar
  39. 39.
    Kaneko, M., Kudo, T., Iwasaki, H., Ikehara, Y., Nishihara, S., Nakagawa, S., Sasaki, K., Shiina, T., Inoko, H., Saitou, N., Narimatsu, H.: Alpha1,3-fucosyltransferase IX (Fuc-TIX) is very highly conserved between human and mouse; molecular cloning, characterization and tissue distribution of human Fuc-TIX. FEBS Lett. 452, 237–242 (1999)CrossRefPubMedGoogle Scholar
  40. 40.
    Comelli, E.M., Head, S.R., Gilmartin, T., Whisenant, T., Haslam, S.M., North, S.J., Wong, N.K., Kudo, T., Narimatsu, H., Esko, J.D., Drickamer, K., Dell, A., Paulson, J.C.: A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology 16, 117–131 (2006)CrossRefPubMedGoogle Scholar
  41. 41.
    Fujita, K., Shimomura, M., Uemura, M., Nakata, W., Sato, M., Nagahara, A., Nakai, Y., Takamatsu, S., Miyoshi, E.: Serum fucosylated haptoglobin as a novel prognostic biomarker predicting high-gleason prostate cancer. Prostate 74, 1052–1058 (2014)CrossRefPubMedGoogle Scholar
  42. 42.
    Barthel, S.R., Wiese, G.K., Cho, J., Opperman, M.J., Hays, D.L., Siddiqui, J., Pienta, K.J., Furie, B., Dimitroff, C.J.: Alpha 1,3 fucosyltransferases are master regulators of prostate cancer cell trafficking. Proc. Natl. Acad. Sci. U. S. A. 106, 19491–19496 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Li, J., Guillebon, A.D., Hsu, J.W., Barthel, S.R., Dimitroff, C.J., Lee, Y.F., King, M.R.: Human fucosyltransferase 6 enables prostate cancer metastasis to bone. Br. J. Cancer 109, 3014–3022 (2013)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shiro Takahashi
    • 1
  • Taiki Sugiyama
    • 1
  • Mayuka Shimomura
    • 2
  • Yoshihiro Kamada
    • 2
  • Kazutoshi Fujita
    • 3
  • Norio Nonomura
    • 3
  • Eiji Miyoshi
    • 2
  • Miyako Nakano
    • 1
  1. 1.Graduate School of Advanced Sciences of MatterHiroshima UniversityHigashi-hiroshimaJapan
  2. 2.Department of Molecular Biochemistry & Clinical InvestigationOsaka University Graduate School of MedicineOsakaJapan
  3. 3.Department of UrologyOsaka University Graduate School of MedicineOsakaJapan

Personalised recommendations