Advertisement

Glycoconjugate Journal

, Volume 33, Issue 1, pp 113–120 | Cite as

One-pot preparation of labelled mannan–peptide conjugate, model for immune cell processing

  • Pavol Farkaš
  • Alžbeta Čížová
  • Peter Bystrický
  • Lucia Paulovičová
  • Ema Paulovičová
  • Slavomír Bystrický
Original Article

Abstract

An efficient method for preparation of fluorescently labelled mannan–peptide glycoconjugates has been developed. After selective Dess–Martin periodinane oxidation of mannan, it was conjugated to the fluorescent label alone and a peptide with the label via reductive amination. Prepared glycoconjugates were characterised by HPSEC, FTIR-ATR and UV-VIS spectroscopy. Finally, the fluorescently labelled mannan and mannan–peptide conjugate were used for microscopic visualization of their accumulation in intracellular organelles of RAW 264.7 cells.

Keywords

Mannan Glycoconjugate Fluorescent label Candida albicans 2-aminobenzamide 

Notes

Acknowledgments

This work was supported by Grant Agency of Slovak Academy of Sciences VEGA No. 2/0026/13 and is the result of the project implementation: Centre of Excellence for Glycomics, ITMS 26240120031, supported by the Programme funded by the ERDF.

Supplementary material

10719_2015_9644_MOESM1_ESM.pdf (547 kb)
ESM 1 (PDF 547 kb)

References

  1. 1.
    Berti F., Adamo R.: Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem. Biol. (2013). doi: 10.1021/cb400423g Google Scholar
  2. 2.
    Avci F.Y., Li X., Tsuji M., Kasper D.L.: A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat. Med. (2011). doi: 10.1038/nm.2535 PubMedCentralPubMedGoogle Scholar
  3. 3.
    Lai Z., Schreiber J.R.: Antigen processing of glycoconjugate vaccines; the polysaccharide portion of the pneumococcal CRM197 conjugate vaccine co-localizes with MHC II on the antigen processing cell surface. Vaccine. (2009). doi: 10.1016/j.vaccine.2009.03.064 Google Scholar
  4. 4.
    Jones J.K.N., Stoodley R.J.: Fractionation using copper complexes. In: Whistler R.L. (ed.) Methods in carbohydrate chemistry 5, pp. 36–38. Academic press, New York, NY, USA (1965)Google Scholar
  5. 5.
    Čížová A., Bystrický P., Bystrický S.: Ultrasonic and free-radical degradation of mannan from Candida albicans. Int. J. Biol. Macromol. (2015). doi: 10.1016/j.ijbiomac.2014.12.046 PubMedGoogle Scholar
  6. 6.
    Park J.T., Johnson M.J.: A submicrodetermination of glucose. J. Biol. Chem. 181, 149–151 (1949)PubMedGoogle Scholar
  7. 7.
    Shibata N., Kobayashi H., Suzuki S.: Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. P JPN Acad B-Phys. (2012). doi: 10.2183/pjab.88.250 Google Scholar
  8. 8.
    Liu M., Machová E., Neščáková Z., Medovarská I., Clemons K.V., Martinez M., Chen V., Bystrický S., Stevens D.A.: Vaccination with mannan protects mice against systemic aspergillosis. Med. Myc. (2012). doi: 10.3109/13693786.2012.683539 Google Scholar
  9. 9.
    Apostolopoulos V., Pietersz G.A., Loveland B.E., Sandrin M.S., McKenzie I.F.: Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc. Natl. Acad. Sci. U. S. A. 92, 10128–10132 (1995)PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Loveland B.E., Zhao A., White S., Gan H., Hamilton K., Xing P.X., Pietersz G.A., Apostolopoulos V., Vaughan H., Karanikas V., Kyriakou P., McKenzie I.F.C., Mitchell P.L.R.: Mannan-MUC1–pulsed dendritic cell immunotherapy: a phase I. Trial in patients with adenocarcinoma. Clin. Cancer Res. (2006). doi: 10.1158/1078-0432.ccr-05-1574 PubMedGoogle Scholar
  11. 11.
    Tojo G., Fernández M.I.: Oxidation of alcohols to aldehydes and ketones. Springer, USA (2006)Google Scholar
  12. 12.
    Ďurana R., Lacík I., Paulovičová E., Bystrický S.: Functionalization of mannans from pathogenic yeasts by different means of oxidations—preparation of precursors for conjugation reactions with respect to preservation of immunological properties. Carbohydr. Polym. (2006). doi: 10.1016/j.carbpol.2005.08.003 Google Scholar
  13. 13.
    Šedová P., Buffa R., Kettou S., Huerta-Angeles G., Hermannová M., Leierová V., Šmejkalová D., Moravcová M., Velebný V.: Preparation of hyaluronan polyaldehyde – a precursor of biopolymer conjugates. Carbohyd. Res. (2013). doi: 10.1016/j.carres.2013.01.025 Google Scholar
  14. 14.
    Angelin M., Hermansson M., Dong H., Ramström O.: Direct, mild, and selective synthesis of unprotected dialdo-glycosides. Eur. J. Org. Chem. (2006). doi: 10.1002/ejoc.200600288 Google Scholar
  15. 15.
    Thygesen M.B., Munch H., Sauer J., Cló E., Jørgensen M.R., Hindsgaul O., Jensen K.J.: Nucleophilic catalysis of carbohydrate oxime formation by anilines. J. Org. Chem. (2010). doi: 10.1021/jo902425v PubMedGoogle Scholar
  16. 16.
    Anumula K.R.: Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal. Biochem. (2006). doi: 10.1016/j.ab.2005.09.037 PubMedGoogle Scholar
  17. 17.
    Kakehi K., Funakubo T., Suzuki S., Oda Y., Kitada Y.: 3-aminobenzamide and 3-aminobenzoic acid, tags for capillary electrophoresis of complex carbohydrates with laser-induced fluorescent detection. J. Chromatogr. A. (1999). doi: 10.1016/s0021-9673(99)00978-4 PubMedGoogle Scholar
  18. 18.
    Sato K., Sato K.I., Okubo A., Yamazaki S.: Determination of monosaccharides derivatized with 2-aminobenzoic acid by capillary electrophoresis. Anal. Biochem. (1997). doi: 10.1006/abio.1997.2266 Google Scholar
  19. 19.
    Huang Z., Prickett T., Potts M., Helm R.F.: The use of the 2-aminobenzoic acid tag for oligosaccharide gel electrophoresis. Carbohyd. Res. (2000). doi: 10.1016/s0008-6215(00)00045-8 Google Scholar
  20. 20.
    Ishii T., Ichita J., Matsue H., Ono H., Maeda I.: Fluorescent labeling of pectic oligosaccharides with 2-aminobenzamide and enzyme assay for pectin. Carbohyd. Res. (2002). doi: 10.1016/s0008-6215(02)00087-3 Google Scholar
  21. 21.
    Shaaban K.A., Shepherd M.D., Ahmed T.A., Nybo S.E., Leggas M., Rohr J.: Pyramidamycins a–D and 3-hydroxyquinoline-2-carboxamide; cytotoxic benzamides from Streptomyces sp DGC1. J. Antibiot. (2012). doi: 10.1038/ja.2012.81 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Luyai A., Lasanajak Y., Smith D.F., Cummings R.D., Song X.Z.: Facile preparation of fluorescent neoglycoproteins using p-nitrophenyl anthranilate as a heterobifunctional linker. Bioconjug. Chem. (2009). doi: 10.1021/bc900189h PubMedCentralPubMedGoogle Scholar
  23. 23.
    Nagaoka Y., Maeda T., Kawai Y., Nakashima D., Oikawa T., Shimoke K., Ikeuchi T., Kuwajima H., Uesato S.: Synthesis and cancer antiproliferative activity of new histone deacetylase inhibitors: hydrophilic hydroxamates and 2-aminobenzamide-containing derivatives. Eur. J. Med. Chem. (2006). doi: 10.1016/j.ejmech.2006.02.002 PubMedGoogle Scholar
  24. 24.
    Xin H., Dziadek S., Bundle D.R., Cutler J.E.: Synthetic glycopeptide vaccines combining β-mannan and peptide epitopes induce protection against candidiasis. Proc. Natl. Acad. Sci. U. S. A. (2008). doi: 10.1073/pnas.0803195105 Google Scholar
  25. 25.
    Gauglitz G.G., Callenberg H., Weindl G., Korting H.C.: Host defence against Candida albicans and the role of pattern-recognition receptors. Acta Derm. Venereol. (2012). doi: 10.2340/00015555-1250 PubMedGoogle Scholar
  26. 26.
    Becker, K.L., Ifrim, D.C., Quintin, J., Netea. M.G., van de Veerdonk. F.L.: Antifungal innate immunity: recognition and inflammatory networks. Semin. Immunopathol. (2015). doi:10.1007/s00281-014-0467-zGoogle Scholar
  27. 27.
    Chamberlain L.M., Holt-Casper D., Gonzalez-Juarrero M., Grainger D.W.: Extended culture of macrophages from different sources and maturation results in a common M2 phenotype. J. Biomed. Mater. Res. A. (2015). doi: 10.1002/jbm.a.35415 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pavol Farkaš
    • 1
  • Alžbeta Čížová
    • 1
  • Peter Bystrický
    • 1
  • Lucia Paulovičová
    • 1
  • Ema Paulovičová
    • 1
  • Slavomír Bystrický
    • 1
  1. 1.Institute of Chemistry, Center for GlycomicsSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations