Glycoconjugate Journal

, Volume 32, Issue 8, pp 559–574 | Cite as

Fluorescently labelled glycans and their applications

  • Hongbin Yan
  • Ravi Shekar Yalagala
  • Fengyang Yan


This review summarises the literature on the synthesis and applications of fluorescently labelled carbohydrates. Due to the sensitivity of fluorescent detection, this approach provides a useful tool to study processes involving glycans. A few general categories of labelling are presented, in situ labelling of carbohydrates with fluorophores, fluorescently labelled glycolipids, fluorogenic glycans, pre-formed fluorescent glycans for intracellular applications, glycan-decorated fluorescent polymers, fluorescent glyconanoparticles, and other functional fluorescent glycans.


Fluorescent labelling Glycan Carbohydrate detection Fluorogenic glycoside Fluorescent polymer Glyconanoparticle Lectin Fluorescently labelled glycolipid 



Work in Yan’s laboratory was funded by the Natural Science and Engineering Research Council of Canada. The authors wish to thank Dr. Dennis Whitefield for helpful suggestions.


  1. 1.
    Cao, H.S., Heagy, M.D.: Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spies for saccharides in review. J. Fluoresc. 14, 569–584 (2004)PubMedCrossRefGoogle Scholar
  2. 2.
    Mader, H.S., Wolfbeis, O.S.: Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim. Acta 162, 1–34 (2008)CrossRefGoogle Scholar
  3. 3.
    Sinkeldam, R.W., Greco, N.J., Tor, Y.: Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem. Rev. 110, 2579–2619 (2010)PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Wang, W., Gao, X.M., Wang, B.H.: Boronic acid-based sensors. Curr. Org. Chem. 6, 1285–1317 (2002)CrossRefGoogle Scholar
  5. 5.
    Yoon, J., Czarnik, A.W.: Fluorescent chemosensors of carbohydrates - a means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching. J. Am. Chem. Soc. 114, 5874–5875 (1992)CrossRefGoogle Scholar
  6. 6.
    DiCesare, N., Lakowicz, J.R.: Spectral properties of fluorophores combining the boronic acid group with electron donor or withdrawing groups. Implication in the development of fluorescence probes for saccharides. J. Phys. Chem. A 105, 6834–6840 (2001)CrossRefGoogle Scholar
  7. 7.
    Weber, P., Harrison, F.W., Hof, L.: Histochemical application of dansylhydrazine as a fluorescent labeling reagent for sialic-acid in cellular glycoconjugates. Histochemistry 45, 271–277 (1975)PubMedCrossRefGoogle Scholar
  8. 8.
    Weber, P., Hof, L.: Introduction of a fluorescent label into carbohydrate moiety of glycoconjugates. Biochem. Biophys. Res. Commun. 65, 1298–1302 (1975)PubMedCrossRefGoogle Scholar
  9. 9.
    Ingham, K.C., Brew, S.A.: Fluorescent labeling of the carbohydrate moieties of human chorionic-gonadotropin and α-1-acid glycoprotein. Biochim. Biophys. Acta 670, 181–189 (1981)PubMedCrossRefGoogle Scholar
  10. 10.
    Mechref, Y., Ostrander, G.K., El Rassi, Z.: Capillary electrophoresis of carboxylated carbohydrates.1. Selective precolumn derivatization of gangliosides with UV absorbing and fluorescent tags. J. Chromatogr. A 695, 83–95 (1995)PubMedCrossRefGoogle Scholar
  11. 11.
    Anumula, K.R., Du, P.: Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins. Anal. Biochem. 275, 236–242 (1999)PubMedCrossRefGoogle Scholar
  12. 12.
    Coles, E., Reinhold, V.N., Carr, S.A.: Fluorescent labeling of carbohydrates and analysis by liquid-chromatography - comparison of derivatives using mannosidosis oligosaccharides. Carbohydr. Res. 139, 1–11 (1985)PubMedCrossRefGoogle Scholar
  13. 13.
    Her, G.R., Santikarn, S., Reinhold, V.N., Williams, J.C.: Simplified approach to HPLC precolumn fluorescent labeling of carbohydrates - N-(2-pyridinyl)-glycosylamines. J. Carbohydr. Chem. 6, 129–139 (1987)CrossRefGoogle Scholar
  14. 14.
    Abraham, G., Low, P.S.: Covalent labeling of specific membrane carbohydrate residues with fluorescent-probes. Biochim. Biophys. Acta 597, 285–291 (1980)PubMedCrossRefGoogle Scholar
  15. 15.
    Trabbic, K.R., De Silva, R.A., Andreana, P.R.: Elucidating structural features of an entirely carbohydrate cancer vaccine construct employing circular dichroism and fluorescent labeling. MedChemComm 5, 1143–1149 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Momose, T., Ohkura, Y.: Organic analysis. X. Reaction mechanism of 5-hydroxytetralone with glucose. Chem. Pharm. Bull. 6, 412–415 (1958)PubMedCrossRefGoogle Scholar
  17. 17.
    Towne, J.C., Spikner, J.E.: Fluorometric microdetermination of carbohydrates. Anal. Chem. 35, 211–214 (1963)CrossRefGoogle Scholar
  18. 18.
    Bounias, M.: N-(1-Naphthyl)ethylenediamine dihydrochloride as a new reagent for nanomole quantification of sugars on thin-layer plates by a mathematical calibration process. Anal. Biochem. 106, 291–295 (1980)PubMedCrossRefGoogle Scholar
  19. 19.
    Honda, S., Kakimoto, K., Sudo, K., Kakehi, K., Takiura, K.: Fluorimetric determination of reducing sugars with ethylenediamine sulfate. Anal. Chim. Acta 70, 133–139 (1974)CrossRefGoogle Scholar
  20. 20.
    Honda, S., Matsuda, Y., Terao, M., Kakehi, K.: Fluorimetric determination of reducing carbohydrates with malonamide. Anal. Chim. Acta 108, 421–423 (1979)CrossRefGoogle Scholar
  21. 21.
    Kato, T., Kinoshita, T.: Fluorometric analysis of biological-materials. 1. Fluorophotometric determination of carbohydrates using taurine and borate. Chem. Pharm. Bull. 26, 1291–1294 (1978)CrossRefGoogle Scholar
  22. 22.
    Kato, T., Kinoshita, T.: Fluorometric analysis of biological-materials. 2. Fluorometric detection and determination of carbohydrates by high-performance liquid-chromatography using ethanolamine. Anal. Biochem. 106, 238–243 (1980)PubMedCrossRefGoogle Scholar
  23. 23.
    Honda, S., Matsuda, Y., Takahashi, M., Kakehi, K., Ganno, S.: Fluorimetric determination of reducing carbohydrates with 2-cyanoacetamide and application to automated-analysis of carbohydrates as borate complexes. Anal. Chem. 52, 1079–1082 (1980)CrossRefGoogle Scholar
  24. 24.
    Kai, M., Tamura, K., Yamaguchi, M., Ohkura, Y.: Aromatic amidines as fluorogenic reagents, for reducing carbohydrates. Anal. Sci. 1, 59–63 (1985)CrossRefGoogle Scholar
  25. 25.
    Hammond, K.S., Papermaster, D.S.: Fluorometric assay of sialic-acid in picomole range - modification of thiobarbituric acid assay. Anal. Biochem. 74, 292–297 (1976)PubMedCrossRefGoogle Scholar
  26. 26.
    Matsuno, K., Suzuki, S.: Simple fluorimetric method for quantification of sialic acids in glycoproteins. Anal. Biochem. 375, 53–59 (2008)PubMedCrossRefGoogle Scholar
  27. 27.
    Cai, Z.P., Hagan, A.K., Wang, M.M., Flitsch, S.L., Liu, L., Voglmeir, J.: 2-Pyridylfuran: a new fluorescent tag for the analysis of carbohydrates. Anal. Chem. 86, 5179–5186 (2014)PubMedCrossRefGoogle Scholar
  28. 28.
    Pagano, R.E., Watanabe, R., Wheatley, C., Dominguez, M.: Applications of BODIPY-sphingolipid analogs to study lipid traffic and metabolism in cells. Methods Enzymol. 312, 523–534 (2000)PubMedCrossRefGoogle Scholar
  29. 29.
    Rasmussen, J.-A.M., Hermetter, A.: Chemical synthesis of fluorescent glycero- and sphingolipids. Prog. Lipid Res. 47, 436–460 (2008)PubMedCrossRefGoogle Scholar
  30. 30.
    Bittman, R.: The 2003 ASBMB-avanti award in lipids address: applications of novel synthetic lipids to biological problems. Chem. Phys. Lipids 129, 111–131 (2004)PubMedCrossRefGoogle Scholar
  31. 31.
    Pagano, R.E., Martin, O.C., Kang, H.C., Haugland, R.P.: A novel fluorescent ceramide analog for studying membrane traffic in animal-cells - accumulation at the Golgi-apparatus results in altered spectral properties of the sphingolipid precursor. J. Cell Biol. 113, 1267–1279 (1991)PubMedCrossRefGoogle Scholar
  32. 32.
    Gretskaya, N.M., Bezuglov, V.V.: Synthesis of BODIPYA® FL C5-Labeled D-erythro- and L-threo-lactosylceramides. Chem. Nat. Compd. 49, 17–20 (2013)CrossRefGoogle Scholar
  33. 33.
    Vo-Hoang, Y., Micouin, L., Ronet, C., Gachelin, G., Bonin, M.: Total enantioselective synthesis and in vivo biological evaluation of a novel fluorescent BODIPY α-galactosylceramide. Chembiochem 4, 27–33 (2003)PubMedCrossRefGoogle Scholar
  34. 34.
    Singh, R.D., Liu, Y.D., Wheatley, C.L., Holicky, E.L., Makino, A., Marks, D.L., Kobayashi, T., Subramaniam, G., Bittman, R., Pagano, R.E.: Caveolar endocytosis and microdomain association of a glycosphingolipid analog is dependent on its sphingosine stereochemistry. J. Biol. Chem. 281, 30660–30668 (2006)PubMedCrossRefGoogle Scholar
  35. 35.
    Singh, R.D., Puri, V., Valiyaveettil, J.T., Marks, D.L., Bittman, R., Pagano, R.E.: Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol. Biol. Cell 14, 3254–3265 (2003)PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Liu, Y.D., Bittman, R.: Synthesis of fluorescent lactosylceramide stereoisomers. Chem. Phys. Lipids 142, 58–69 (2006)PubMedCrossRefGoogle Scholar
  37. 37.
    Mikhalyov, I.I., Molotkovsky, J.G.: Synthesis and characteristics of fluorescent BODIPY-labeled gangliosides. Russ. J. Bioorg. Chem. 29, 168–174 (2003)CrossRefGoogle Scholar
  38. 38.
    Schwarzmann, G., Wendeler, M., Sandhoff, K.: Synthesis of novel NBD-GM1 and NBD-GM2 for the transfer activity of GM2-activator protein by a FRET-based assay system. Glycobiology 15, 1302–1311 (2005)PubMedCrossRefGoogle Scholar
  39. 39.
    Sarver, S.A., Keithley, R.B., Essaka, D.C., Tanaka, H., Yoshimura, Y., Palcic, M.M., Hindsgaul, O., Dovichi, N.J.: Preparation and electrophoretic separation of Bodipy-Fl-labeled glycosphingolipids. J. Chromatogr. A 1229, 268–273 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Whitmore, C.D., Hindsgaul, O., Palcic, M.M., Schnaar, R.L., Dovichi, N.J.: Metabolic cytometry. Glycosphingolipid metabolism in single cells. Anal. Chem. 79, 5139–5142 (2007)PubMedCrossRefGoogle Scholar
  41. 41.
    Dada, O.O., Essaka, D.C., Hindsgaul, O., Palcic, M.M., Prendergast, J., Schnaar, R.L., Dovichi, N.J.: Nine orders of magnitude dynamic range: picomolar to millimolar concentration measurement in capillary electrophoresis with laser induced fluorescence detection employing cascaded avalanche photodiode photon counters. Anal. Chem. 83, 2748–2753 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Essaka, D.C., Prendergast, J., Keithley, R.B., Palcic, M.M., Hindsgaul, O., Schnaar, R.L., Dovichi, N.J.: Metabolic cytometry: capillary electrophoresis with two-color fluorescence detection for the simultaneous study of two glycosphingolipid metabolic pathways in single primary neurons. Anal. Chem. 84, 2799–2804 (2012)PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Keithley, R.B., Rosenthal, A.S., Essaka, D.C., Tanaka, H., Yoshimura, Y., Palcic, M.M., Hindsgaul, O., Dovichi, N.J.: Capillary electrophoresis with three-color fluorescence detection for the analysis of glycosphingolipid metabolism. Analyst 138, 164–170 (2013)PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Daikoku, S., Ono, Y., Ohtake, A., Hasegawa, Y., Fukusaki, E., Suzuki, K., Ito, Y., Goto, S., Kanie, O.: Fluorescence-monitored zero dead-volume nanoLC-microESI-QIT-TOF MS for analysis of fluorescently tagged glycosphingolipids. Analyst 136, 1046–1050 (2011)PubMedCrossRefGoogle Scholar
  45. 45.
    Gross, H.J., Brossmer, R.: Enzymatic introduction of a fluorescent sialic-acid into oligosaccharide chains of glycoproteins. Eur. J. Biochem. 177, 583–589 (1988)PubMedCrossRefGoogle Scholar
  46. 46.
    Gross, H.J., Sticher, U., Brossmer, R.: A highly sensitive fluorometric assay for sialyltransferase activity using CMP-9-fluoresceinyl-NeuAc as donor. Anal. Biochem. 186, 127–134 (1990)PubMedCrossRefGoogle Scholar
  47. 47.
    Gross, H.J., Brossmer, R.: Characterization of human plasma sialyltransferase using a novel fluorometric assay. Clin. Chim. Acta 197, 237–248 (1991)PubMedCrossRefGoogle Scholar
  48. 48.
    Gross, H.J.: Fluorescent CMP-sialic acids as a tool to study the specificity of the CMP-sialic acid carrier and the glycoconjugate sialylation in permeabilized cells. Eur. J. Biochem. 203, 269–275 (1992)PubMedCrossRefGoogle Scholar
  49. 49.
    Wu, X.J., Tian, Y.P., Yu, M.Z., Lin, B.J., Han, J.H., Han, S.F.: A fluorescently labelled sialic acid for high performance intraoperative tumor detection. Biomater. Sci. 2, 1120–1127 (2014)CrossRefGoogle Scholar
  50. 50.
    Suzuki, K., Ohtake, A., Ito, Y., Kanie, O.: Synthesis of a fluorescently tagged sialic acid analogue useful for live-cell imaging. Chem. Commun. 48, 9744–9746 (2012)CrossRefGoogle Scholar
  51. 51.
    Turner, D.I., Chakraborty, N., d’Alarcao, M.: A fluorescent inositol phosphate glycan stimulates lipogenesis in rat adipocytes by extracellular activation alone. Bioorg. Med. Chem. Lett. 15, 2023–2025 (2005)PubMedCrossRefGoogle Scholar
  52. 52.
    Hagihara, S., Miyazaki, A., Matsuo, I., Tatami, A., Suzuki, T., Ito, Y.: Fluorescently labeled inhibitor for profiling cytoplasmic peptide: N-glycanase. Glycobiology 17, 1070–1076 (2007)PubMedCrossRefGoogle Scholar
  53. 53.
    Hekmat, O., Florizone, C., Kim, Y.-W., Eltis, L.D., Warren, R.A.J., Withers, S.G.: Specificity fingerprinting of retaining β-1,4-glycanases in the Cellulomonas fimi secretome using two fluorescent mechanism-based probes. Chembiochem 8, 2125–2132 (2007)PubMedCrossRefGoogle Scholar
  54. 54.
    Suzuki, K., Tobe, A., Adachi, S., Daikoku, S., Hasegawa, Y., Shioiri, Y., Kobayashi, M., Kanie, O.: N-Hexyl-4-aminobutyl glycosides for investigating structures and biological functions of carbohydrates. Org. Biomol. Chem. 7, 4726–4733 (2009)PubMedCrossRefGoogle Scholar
  55. 55.
    Uppal, T., Bhupathiraju, N.V.S.D.K., Vicente, M.G.H.: Synthesis and cellular properties of near-IR BODIPY-PEG and carbohydrate conjugates. Tetrahedron 69, 4687–4693 (2013)CrossRefGoogle Scholar
  56. 56.
    Papalia, T., Siracusano, G., Colao, I., Barattucci, A., Aversa, M.C., Serroni, S., Zappalà, G., Campagna, S., Sciortino, M.T., Puntoriero, F., Bonaccorsi, P.: Cell internalization of BODIPY-based fluorescent dyes bearing carbohydrate residues. Dyes Pigments 110, 67–71 (2014)CrossRefGoogle Scholar
  57. 57.
    van Tilbeurgh, H., Loontiens, F.G., Debruyne, C.K., Claeyssens, M.: Fluorogenic and chromogenic glycosides as substrates and ligands of carbohydrases. Methods Enzymol. 160, 45–59 (1988)CrossRefGoogle Scholar
  58. 58.
    Öckerman, P.A.: Identity of β-glucosidase β-xylosidase and one of β-galactosidase activities in human liver when assayed with 4-methylumbelliferyl-β-D-glycosides studies in cases of Gauchers disease. Biochim. Biophys. Acta 165, 59–62 (1968)PubMedCrossRefGoogle Scholar
  59. 59.
    van Tilbeurgh, H., Claeyssens, M., de Bruyne, C.K.: The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett. 149, 152–156 (1982)CrossRefGoogle Scholar
  60. 60.
    Szweda, R., Spohr, U., Lemieux, R.U., Schindler, D., Bishop, D.F., Desnick, R.J.: Synthesis of 4-methylumbelliferyl glycosides for the detection of α-D-galactopyranosaminidases and β-D-galactopyranosaminidases. Can. J. Chem. 67, 1388–1391 (1989)CrossRefGoogle Scholar
  61. 61.
    Lee, J.C., Chang, S.W., Liao, C.C., Chi, F.C., Chen, C.S., Wen, Y.S., Wang, C.C., Kulkarni, S.S., Puranik, R., Liu, Y.H., Hung, S.C.: From D-glucose to biologically potent L-hexose derivatives: synthesis of α-L-iduronidase fluorogenic detector and the disaccharide moieties of bleomycin A2 and heparan sulfate. Chem. Eur. J. 10, 399–415 (2004)PubMedCrossRefGoogle Scholar
  62. 62.
    Yasukochi, T., Fukase, K., Suda, Y., Takagaki, K., Endo, M., Kusumoto, S.: Enzymatic synthesis of 4-methylumbelliferyl glycosides of trisaccharide and core tetrasaccharide, Gal(β1-3)Gal(β1-4)Xyl and GlcA(β1-3)Gal(β1-3)Gal(β1-4)Xyl, corresponding to the linkage region of proteoglycans. Bull. Chem. Soc. Jpn. 70, 2719–2725 (1997)CrossRefGoogle Scholar
  63. 63.
    Wang, L.X., Keyhani, N.O., Roseman, S., Lee, Y.C.: 4-Methylumbelliferyl glycosides of N-acetyl 4-thiochito-oligosaccharides as fluorogenic substrates for chitodextrinase from Vibrio furnissii. Glycobiology 7, 855–860 (1997)PubMedCrossRefGoogle Scholar
  64. 64.
    Honda, Y., Tanimori, S., Kirihata, M., Kaneko, S., Tokuyasu, K., Hashimoto, M., Watanabe, T.: Chemo- and enzymatic synthesis of partially and fully N-deacetylated 4-methylumbelliferyl chitobiosides: fluorogenic substrates for chitinase. Bioorg. Med. Chem. Lett. 10, 827–829 (2000)PubMedCrossRefGoogle Scholar
  65. 65.
    Eneyskaya, E.V., Ivanen, D.R., Shabalin, K.A., Kulminskaya, A.A., Backinowsky, L.V., Brumer III, H., Neustroev, K.N.: Chemo-enzymatic synthesis of 4-methylumbelliferyl β-(1- > 4)-D-xylooligosides: new substrates for β-D-xylanase assays. Org. Biomol. Chem. 3, 146–151 (2005)PubMedCrossRefGoogle Scholar
  66. 66.
    Mazzaferro, L.S., Piñuel, L., Erra-Balsells, R., Giudicessi, S.L., Breccia, J.D.: Transglycosylation specificity of Acremonium sp α-rhamnosyl-β-glucosidase and its application to the synthesis of the new fluorogenic substrate 4-methylumbelliferyl-rutinoside. Carbohydr. Res. 347, 69–75 (2012)PubMedCrossRefGoogle Scholar
  67. 67.
    Deng, L.H., Tsybina, P., Gregg, K.J., Mosi, R., Zandberg, W.F., Boraston, A.B..., Vocadlo, D.J.: Synthesis of 4-methylumbelliferyl α-D-mannopyranosyl-(1- > 6)-β-D-mannopyranoside and development of a coupled fluorescent assay for GH125 exo-α-1,6-mannosidases. Bioorg. Med. Chem. 21, 4839–4845 (2013)PubMedCrossRefGoogle Scholar
  68. 68.
    Zbiral, E., Schreiner, E., Salunkhe, M.M., Schulz, G., Kleineidam, R.G., Schauer, R.: Synthesis of the 4-methylumbelliferyl 2α-glycosides of 7-epi-N-acetylneuraminic, 8-epi-N-acetylneuraminic, and 7,8-bis(epi)-N-acetylneuraminic acids, as well as of 7-deoxy-N-acetylneuraminic, 8-deoxy-N-acetylneuraminic, 9-deoxy-N-acetylneuraminic, and 4,7-dideoxy-N-acetylneuraminic acids and their behavior towards sialidase from Vibrio cholerae. Liebigs Ann. Chem. 519–526 (1989)Google Scholar
  69. 69.
    Kleineidam, R.G., Furuhata, K., Ogura, H., Schauer, R.: 4-Methylumbelliferyl-α-glycosides of partially O-acetylated N-acetylneuraminic acids as substrates of bacterial and viral sialidases. Biol. Chem. Hoppe Seyler 371, 715–719 (1990)PubMedCrossRefGoogle Scholar
  70. 70.
    Zamora, C.Y., d’Alarcao, M., Kumar, K.: Fluorogenic sialic acid glycosides for quantification of sialidase activity upon unnatural substrates. Bioorg. Med. Chem. Lett. 23, 3406–3410 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Engstler, M., Talhouk, J.W., Smith, R.E., Schauer, R.: Chemical synthesis of 4-trifluoromethylumbelliferyl-α-D-N-acetylneuraminic acid glycoside and its use for the fluorometric detection of poorly expressed natural and recombinant sialidases. Anal. Biochem. 250, 176–180 (1997)PubMedCrossRefGoogle Scholar
  72. 72.
    Ge, Y., Antoulinakis, E.G., Gee, K.R., Johnson, I.: An ultrasensitive, continuous assay for xylanase using the fluorogenic substrate 6,8-difluoro-4-methylumbelliferyl β-D-xylobloside. Anal. Biochem. 362, 63–68 (2007)PubMedCrossRefGoogle Scholar
  73. 73.
    Wu, M., Nerinckx, W., Piens, K., Ishida, T., Hansson, H., Sandgren, M., Ståhlberg, J.: Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases. FEBS J. 280, 184–198 (2013)PubMedCrossRefGoogle Scholar
  74. 74.
    Wiederschain, G.Y., Kozlova, I.K., Ilyina, G.S., Mikhaylova, M.A., Beyer, E.M.: The use of glycosides of 6-acylamino and 8-acylamino-4-methylumbel-liferone in studies of the specificity and properties of human lysosomal glycolipid hydrolases. Carbohydr. Res. 224, 255–272 (1992)PubMedCrossRefGoogle Scholar
  75. 75.
    Miller, S.P.F., French, S.A., Kaneski, C.R.: Synthesis and characterization of a novel lysosomotropic enzyme substrate that fluoresces at intracellular pH. J. Org. Chem. 56, 30–34 (1991)CrossRefGoogle Scholar
  76. 76.
    Renaudet, O., Dumy, P.: Oxime-based synthesis of new chromogenic and fluorogenic oligosaccharides. Eur. J. Org. Chem. 5383–5386 (2008)Google Scholar
  77. 77.
    Ibatullin, F.M., Banasiak, A., Baumann, M.J., Greffe, L., Takahashi, J., Mellerowicz, E.J., Brumer, H.: A real-time fluorogenic assay for the visualization of glycoside hydrolase activity in planta. Plant Physiol. 151, 1741–1750 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Yadav, A.K., Shen, D.L., Shan, X., He, X., Kermode, A.R., Vocadlo, D.J.: Fluorescence-quenched substrates for live cell imaging of human glucocerebrosidase activity. J. Am. Chem. Soc. 137, 1181–1189 (2015)PubMedCrossRefGoogle Scholar
  79. 79.
    Park, S., Lee, M.R., Shin, I.: Carbohydrate microarrays as powerful tools in studies of carbohydrate-mediated biological processes. Chem. Commun. 4389–4399 (2008)Google Scholar
  80. 80.
    Kiessling, L.L., Splain, R.A.: Chemical approaches to glycobiology. Annu. Rev. Biochem. 79, 619–653 (2010)PubMedCrossRefGoogle Scholar
  81. 81.
    Chevolot, Y.: Carbohydrate microarrays: methods and protocols. Methods in Molecular Biology, vol. 808. Humana Press, New York (2012)Google Scholar
  82. 82.
    Lee, M., Shin, I.: Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org. Lett. 7, 4269–4272 (2005)PubMedCrossRefGoogle Scholar
  83. 83.
    Park, S., Sung, J.W., Shin, I.: Fluorescent glycan derivatives: their use for natural glycan microarrays. ACS Chem. Biol. 4, 699–701 (2009)PubMedCrossRefGoogle Scholar
  84. 84.
    Xia, B.Y., Kawar, Z.S., Ju, T.Z., Alvarez, R.A., Sachdev, G.P., Cummings, R.D.: Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods 2, 845–850 (2005)PubMedCrossRefGoogle Scholar
  85. 85.
    Song, X.Z., Xia, B.Y., Lasanajak, Y., Smith, D.F., Cummings, R.D.: Quantifiable fluorescent glycan microarrays. Glycoconj. J. 25, 15–25 (2008)PubMedCrossRefGoogle Scholar
  86. 86.
    Song, X.Z., Xia, B.Y., Stowell, S.R., Lasanajak, Y., Smith, D.F., Cummings, R.D.: Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem. Biol. 16, 36–47 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Song, X.Z., Lasanajak, Y., Rivera-Marrero, C., Luyai, A., Willard, M., Smith, D., Cummings, R.: Generation of a natural glycan microarray using 9-fluorenylmethyl chloroformate (FmocCl) as a cleavable fluorescent tag. Anal. Biochem. 395, 151–160 (2009)PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Gamblin, D.P., Scanlan, E.M., Davis, B.G.: Glycoprotein synthesis: an update. Chem. Rev. 109, 131–163 (2009)PubMedCrossRefGoogle Scholar
  89. 89.
    Bohorov, O., Andersson-Sand, H., Hoffmann, J., Blixt, O.: Arraying glycomics: a novel bi-functional spacer for one-step microscale derivatization of free reducing glycans. Glycobiology 16, 21C–27C (2006)PubMedCrossRefGoogle Scholar
  90. 90.
    Niikura, K., Kamitani, R., Kurogochi, M., Uematsu, R., Shinohara, Y., Nakagawa, H., Deguchi, K., Monde, K., Kondo, H., Nishimura, S.I.: Versatile glycoblotting nanoparticles for high-throughput protein glycomics. Chem. Eur. J. 11, 3825–3834 (2005)PubMedCrossRefGoogle Scholar
  91. 91.
    Vila-Perelló, M., Gallego, R.G., Andreu, D.: A simple approach to well-defined sugar-coated surfaces for interaction studies. Chembiochem 6, 1831–1838 (2005)PubMedCrossRefGoogle Scholar
  92. 92.
    Zhou, X.C., Zhou, J.H.: Oligosaccharide microarrays fabricated on aminooxyacetyl functionalized glass surface for characterization of carbohydrate-protein interaction. Biosens. Bioelectron. 21, 1451–1458 (2006)PubMedCrossRefGoogle Scholar
  93. 93.
    Tarentino, A.L., Plummer, T.H.: Enzymatic deglycosylation of asparagine-linked glycans - purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol. 230, 44–57 (1994)PubMedCrossRefGoogle Scholar
  94. 94.
    Patel, T.P., Parekh, R.B.: Release of oligosaccharides from glycoproteins by hydrazinolysis. Methods Enzymol. 230, 57–66 (1994)PubMedCrossRefGoogle Scholar
  95. 95.
    Galanina, O., Feofanov, A., Tuzikov, A.B..., Rapoport, E., Crocker, P.R., Grichine, A., Egret-Charlier, M., Vigny, P., Le Pendu, J., Bovin, N.V.: Fluorescent carbohydrate probes for cell lectins. Spectrochim. Acta A 57, 2285–2296 (2001)CrossRefGoogle Scholar
  96. 96.
    Erdogan, B., Wilson, J.N., Bunz, U.H.F.: Synthesis and mesoseopic order of a sugar-coated poly(p-phenyleneethynylene). Macromolecules 35, 7863–7864 (2002)CrossRefGoogle Scholar
  97. 97.
    Lavigne, J.J., Broughton, D.L., Wilson, J.N., Erdogan, B., Bunz, U.H.F.: “Surfactochromic” conjugated polymers: surfactant effects on sugar-substituted PPEs. Macromolecules 36, 7409–7412 (2003)CrossRefGoogle Scholar
  98. 98.
    Disney, M.D., Zheng, J., Swager, T.M., Seeberger, P.H.: Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J. Am. Chem. Soc. 126, 13343–13346 (2004)PubMedCrossRefGoogle Scholar
  99. 99.
    Kelly, T.L., Lam, M.C.W., Wolf, M.O.: Carbohydrate-labeled fluorescent microparticles and their binding to lectins. Bioconjug. Chem. 17, 575–578 (2006)PubMedCrossRefGoogle Scholar
  100. 100.
    Chen, Q., Xu, Y.H., Du, Y.G., Han, B.H.: Triphenylamine-based fluorescent conjugated glycopolymers: synthesis, characterization and interactions with lectins. Polymer 50, 2830–2835 (2009)CrossRefGoogle Scholar
  101. 101.
    Shi, J.B., Cai, L.P., Pu, K.Y., Liu, B.: Synthesis and characterization of water-soluble conjugated glycopolymer for fluorescent sensing of concanavalin A. Chem. Asian. J. 5, 301–308 (2010)PubMedCrossRefGoogle Scholar
  102. 102.
    Kim, I.B., Wilson, J.N., Bunz, U.H.F.: Mannose-substituted PPEs detect lectins: a model for Ricin sensing. Chem. Commun. 1273–1275 (2005)Google Scholar
  103. 103.
    Xue, C.H., Jog, S.P., Murthy, P., Liu, H.Y.: Synthesis of highly water-soluble fluorescent conjugated glycopoly(p-phenylene)s for lectin and Escherichia coli. Biomacromolecules 7, 2470–2474 (2006)PubMedCrossRefGoogle Scholar
  104. 104.
    Xue, C.H., Donuru, V.R.R., Liu, H.Y.: Facile, versatile prepolymerization and postpolymerization functionalization approaches for well-defined fluorescent conjugated fluorene-based glycopolymers. Macromolecules 39, 5747–5752 (2006)CrossRefGoogle Scholar
  105. 105.
    Phillips, R.L., Kim, I.B., Carson, B.E., Tidbeck, B., Bai, Y., Lowary, T.L., Tollbert, L.M., Bunz, U.H.F.: Sugar-substituted poly(p-phenyleneethynylene)s: sensitivity enhancement toward lectins and bacteria. Macromolecules 41, 7316–7320 (2008)CrossRefGoogle Scholar
  106. 106.
    Xue, C., Velayudham, S., Johnson, S., Saha, R., Smith, A., Brewer, W., Murthy, P., Bagley, S.T., Liu, H.: Highly water-soluble, fluorescent, conjugated fluorene-based glycopolymers with poly(ethylene glycol)-tethered spacers for sensitive detection of Escherichia coli. Chem. Eur. J. 15, 2289–2295 (2009)PubMedCrossRefGoogle Scholar
  107. 107.
    Phillips, R.L., Kim, I.B., Tolbert, L.M., Bunz, U.H.F.: Fluorescence self-quenching of a mannosylated poly(p-phenyleneethynylene) induced by concanavalin A. J. Am. Chem. Soc. 130, 6952–6954 (2008)PubMedCrossRefGoogle Scholar
  108. 108.
    Yang, W., Pan, C.Y., Luo, M.D., Zhang, H.B.: Fluorescent mannose-functionalized hyperbranched poly(amido amine)s: synthesis and interaction with E. coli. Biomacromolecules 11, 1840–1846 (2010)PubMedCrossRefGoogle Scholar
  109. 109.
    Ruff, Y., Buhler, E., Candau, S.J., Kesselman, E., Talmon, Y., Lehn, J.M.: Glycodynamers: dynamic polymers bearing oligosaccharides residues - generation, structure, physicochemical, component exchange, and lectin binding properties. J. Am. Chem. Soc. 132, 2573–2584 (2010)PubMedCrossRefGoogle Scholar
  110. 110.
    Ruff, Y., Lehn, J.M.: Glycodynamers: fluorescent dynamic analogues of polysaccharides. Angew. Chem. Int. Ed. 47, 3556–3559 (2008)CrossRefGoogle Scholar
  111. 111.
    Kikkeri, R., Garcia-Rubio, I., Seeberger, P.H.: Ru(II)-carbohydrate dendrimers as photoinduced electron transfer lectin biosensors. Chem. Commun. 235–237 (2009)Google Scholar
  112. 112.
    Tian, X., Pai, J., Baek, K.H., Ko, S.K., Shin, I.: Fluorophore-labeled, peptide-based glycoclusters: synthesis, binding properties for lectins, and detection of carbohydrate-binding proteins in cells. Chem. Asian. J. 6, 2107–2113 (2011)PubMedCrossRefGoogle Scholar
  113. 113.
    Kikkeri, R., Hossain, L.H., Seeberger, P.H.: Supramolecular one-pot approach to fluorescent glycodendrimers. Chem. Commun. 2127–2129 (2008)Google Scholar
  114. 114.
    Chen, Q.S., Wei, W.L., Lin, J.M.: Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer. Biosens. Bioelectron. 26, 4497–4502 (2011)PubMedCrossRefGoogle Scholar
  115. 115.
    Grünstein, D., Maglinao, M., Kikkeri, R., Collot, M., Barylyuk, K., Lepenies, B., Kamena, F., Zenobi, R., Seeberger, P.H.: Hexameric supramolecular scaffold orients carbohydrates to sense bacteria. J. Am. Chem. Soc. 133, 13957–13966 (2011)PubMedCrossRefGoogle Scholar
  116. 116.
    Zhou, J., Butchosa, N., Jayawardena, H.S.N., Zhou, Q., Yan, M.D., Ramström, O.: Glycan-functionalized fluorescent chitin nanocrystals for biorecognition applications. Bioconjug. Chem. 25, 640–643 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Sanji, T., Shiraishi, K., Nakamura, M., Tanaka, M.: Fluorescence turn-on sensing of lectins with mannose-substituted tetraphenylethenes based on aggregation-induced emission. Chem. Asian. J. 5, 817–824 (2010)PubMedCrossRefGoogle Scholar
  118. 118.
    Das, S., Mandal, S., Mukhopadhyay, B., Zade, S.S.: Synthesis of carbohydrate-functionalized thiophene-capped cyclopenta[c]thiophene for concanavalin A recognition. Tetrahedron Lett. 53, 1464–1467 (2012)CrossRefGoogle Scholar
  119. 119.
    Wang, K.R., Wang, Y.Q., An, H.W., Zhang, J.C., Li, X.L.: A Triazatruxene-based glycocluster as a fluorescent sensor for concanavalin A. Chem. Eur. J. 19, 2903–2909 (2013)PubMedCrossRefGoogle Scholar
  120. 120.
    Wang, J.X., Chen, Q., Bian, N., Yang, F., Sun, J., Qi, A.D., Yan, C.G., Han, B.H.: Sugar-bearing tetraphenylethylene: novel fluorescent probe for studies of carbohydrate-protein interaction based on aggregation-induced emission. Org. Biomol. Chem. 9, 2219–2226 (2011)PubMedCrossRefGoogle Scholar
  121. 121.
    Chen, X., Ramström, O., Yan, M.D.: Glyconanomaterials: emerging applications in biomedical research. Nano Res. 7, 1381–1403 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Marin, M.J., Schofield, C.L., Field, R.A., Russell, D.A.: Glyconanoparticles for colorimetric bioassays. Analyst 140, 59–70 (2015)PubMedCrossRefGoogle Scholar
  123. 123.
    Robinson, A., Fang, J.M., Chou, P.T., Liao, K.W., Chu, R.M., Lee, S.J.: Probing lectin and sperm with carbohydrate-modified quantum dots. Chembiochem 6, 1899–1905 (2005)PubMedCrossRefGoogle Scholar
  124. 124.
    Babu, P., Sinha, S., Surolia, A.: Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjug. Chem. 18, 146–151 (2007)PubMedCrossRefGoogle Scholar
  125. 125.
    Bavireddi, H., Kikkeri, R.: Glyco-β-cyclodextrin capped quantum dots: synthesis, cytotoxicity and optical detection of carbohydrate-protein interactions. Analyst 137, 5123–5127 (2012)PubMedCrossRefGoogle Scholar
  126. 126.
    Mukhopadhyay, B., Martins, M.B., Karamanska, R., Russell, D.A., Field, R.A.: Bacterial detection using carbohydrate-functionalised CdS quantum dots: a model study exploiting E. coli recognition of mannosides. Tetrahedron Lett. 50, 886–889 (2009)CrossRefGoogle Scholar
  127. 127.
    Huang, C.C., Chen, C.T., Shiang, Y.C., Lin, Z.H., Chang, H.T.: Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of concanavalin A and Escherichia coli. Anal. Chem. 81, 875–882 (2009)PubMedCrossRefGoogle Scholar
  128. 128.
    Pfaff, A., Schallon, A., Ruhland, T.M., Majewski, A.P., Schmalz, H., Freitag, R., Müller, A.H.E.: Magnetic and fluorescent glycopolymer hybrid nanoparticles for intranuclear optical imaging. Biomacromolecules 12, 3805–3811 (2011)PubMedCrossRefGoogle Scholar
  129. 129.
    Kim, B.S., Yang, W.Y., Ryu, J.H., Yoo, Y.S., Lee, M.: Carbohydrate-coated nanocapsules from amphiphilic rod-coil molecule: binding to bacterial type 1 pili. Chem. Commun. 2035–2037 (2005)Google Scholar
  130. 130.
    Ryu, J.H., Lee, E., Lim, Y.B., Lee, M.: Carbohydrate-coated supramolecular structures: transformation of nanofibers into spherical micelles triggered by guest encapsulation. J. Am. Chem. Soc. 129, 4808–4814 (2007)PubMedCrossRefGoogle Scholar
  131. 131.
    Bonaccorsi, P., Aversa, M.C., Barattucci, A., Papalia, T., Puntoriero, F., Campagna, S.: Artificial light-harvesting antenna systems grafted on a carbohydrate platform. Chem. Commun. 48, 10550–10552 (2012)CrossRefGoogle Scholar
  132. 132.
    Maisonneuve, S., Métivier, R., Yu, P., Nakatani, K., Xie, J.: Multichromophoric sugar for fluorescence photoswitching. Beilstein J. Org. Chem. 10, 1471–1481 (2014)PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Ågren, J.K.M., Billing, J.F., Grundberg, H.E., Nilsson, U.J.: Synthesis of a chiral and fluorescent sugar-based macrocycle by 1,3-dipolar cycloaddition. Synthesis 3141–3145 (2006)Google Scholar
  134. 134.
    Xie, J., Menand, M., Maisonneuve, S., Métivier, R.: Synthesis of bispyrenyl sugar-aza-crown ethers as new fluorescent molecular sensors for Cu(II). J. Org. Chem. 72, 5980–5985 (2007)PubMedCrossRefGoogle Scholar
  135. 135.
    Hsieh, Y.C., Chir, J.L., Wu, H.H., Guo, C.Q., Wu, A.T.: Synthesis of a sugar-aza-crown ether-based cavitand as a selective fluorescent chemosensor for Cu2+ ion. Tetrahedron Lett. 51, 109–111 (2010)CrossRefGoogle Scholar
  136. 136.
    Hsieh, Y.C., Chir, J.L., Yang, S.T., Chen, S.J., Hu, C.H., Wu, A.T.: A sugar-aza-crown ether-based fluorescent sensor for Cu2+ and Hg2+ ions. Carbohydr. Res. 346, 978–981 (2011)PubMedCrossRefGoogle Scholar
  137. 137.
    Hsieh, Y.C., Chir, J.L., Wu, H.H., Chang, P.S., Wu, A.T.: A sugar-aza-crown ether-based fluorescent sensor for Hg2+ and Cu2+. Carbohydr. Res. 344, 2236–2239 (2009)PubMedCrossRefGoogle Scholar
  138. 138.
    Yu, Y.H., Bogliotti, N., Tang, J., Xie, J.: Synthesis and properties of carbohydrate-based BODIPY-functionalised fluorescent macrocycles. Eur. J. Org. Chem. 7749–7760 (2013)Google Scholar
  139. 139.
    Thakur, A., Mandal, D., Deb, P., Mondal, B., Ghosh, S.: Synthesis of triazole linked fluorescent amino acid and carbohydrate bio-conjugates: a highly sensitive and skeleton selective multi-responsive chemosensor for Cu(II) and Pb(II)/Hg(II) ions. RSC Adv. 4, 1918–1928 (2014)CrossRefGoogle Scholar
  140. 140.
    Li, K.B., Zhang, H.L., Zhu, B., He, X.P., Xie, J., Chen, G.R.: A per-acetyl glycosyl rhodamine as a novel fluorescent ratiometric probe for mercury (II). Dyes Pigments 102, 273–277 (2014)CrossRefGoogle Scholar
  141. 141.
    Yang, L.J., Yalagala, R.S., Hutton, S., Lough, A., Yan, H.B.: Reactions of BODIPY fluorophore with cupric nitrate. Synlett 25, 2661–2664 (2014)CrossRefGoogle Scholar
  142. 142.
    Fei, Y.Y., Sun, Y.S., Li, Y.H., Lau, K., Yu, H., Chokhawala, H.A., Huang, S.S., Landry, J.P., Chen, X., Zhu, X.D.: Fluorescent labeling agents change binding profiles of glycan-binding proteins. Mol. Biosyst. 7, 3343–3352 (2011)PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hongbin Yan
    • 1
  • Ravi Shekar Yalagala
    • 1
  • Fengyang Yan
    • 2
  1. 1.Department of ChemistryBrock UniversitySt. CatharinesCanada
  2. 2.Sussex Research Laboratories Inc.OttawaCanada

Personalised recommendations