Glycoconjugate Journal

, Volume 32, Issue 3–4, pp 113–118 | Cite as

Molecular structure of glycogen in diabetic liver

  • Bin Deng
  • Mitchell A. Sullivan
  • Jialun Li
  • Xinle Tan
  • Chengjun Zhu
  • Benjamin L. Schulz
  • Robert G. Gilbert
Short Communication


Liver glycogen (involved in maintaining blood-sugar levels) is a hyperbranched glucose polymer containing β particles (diameter ~20 nm), which can form composite α particles (diameter ~50–300 nm), and includes a small but significant amount of bound protein. Size distributions of glycogen from livers of healthy and diabetic mice were examined using size-exclusion chromatography with two separate eluents: aqueous eluent and dimethylsulfoxide (DMSO) eluent. Morphologies were examined with transmission electron microscopy. Diabetic glycogen (DG) exhibited many α particles in the mild water-based solvent, but in DMSO, which breaks H bonds, these degraded to β particles; α particles however were always present in healthy glycogen (HG). This DG fragility shows the binding of β into α particles is different in HG and DG. The diabetic α particle fragility may be involved with the uncontrolled blood-sugar release symptomatic of diabetes: small β particles degrade more easily to glucose than α particles. This has implications for diabetes management.


Glycogen db/db mice Size-exclusion chromatography Type 2 diabetes 



The support of the 1000-Talents program of the Chinese Foreign Experts Bureau, and an Australian Research Council Discovery grant, DP130102461, are gratefully acknowledged. We thank Dr. Enpeng Li and Mr. Shiqing Zhou for help with SEC analysis.

Supplementary material

10719_2015_9578_MOESM1_ESM.pdf (920 kb)
ESM 1 (PDF 920 kb)


  1. 1.
    Meyer, F., Heilmeyer, L., Haschke, R.H., Fischer, E.H.: Control of phosphorylase activity in a muscle glycogen particle .1. Isolation and characterization of protein-glycogen complex. J. Biol. Chem. 245(24), 6642–6648 (1970)PubMedGoogle Scholar
  2. 2.
    Rybicka, K.K.: Glycosomes—the organelles of glycogen metabolism. Tissue Cell 28(3), 253–265 (1996)CrossRefPubMedGoogle Scholar
  3. 3.
    Stapleton, D., Nelson, C., Parsawar, K., McClain, D., Gilbert-Wilson, R., Barker, E., Rudd, B., Brown, K., Hendrix, W., O’Donnell, P., Parker, G.: Analysis of hepatic glycogen-associated proteins. Proteomics 10(12), 2320–2329 (2010). doi: 10.1002/pmic.200900628 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Sullivan, M.A., Li, J., Li, C., Vilaplana, F., Zheng, L., Stapleton, D., Gray-Weale, A.A., Bowen, S., Gilbert, R.G.: Molecular structural differences between type-2-diabetic and healthy glycogen. Biomacromolecules 12(6), 1983–1986 (2011). doi: 10.1021/bm2006054 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Sullivan, M.A., Aroney, S.T.N., Li, S., Warren, F.J., Joo, L., Mak, K.S., Stapleton, D.I., Bell-Anderson, K.S., Gilbert, R.G.: Changes in glycogen structure over feeding cycle sheds new light on blood-glucose control. Biomacromolecules 15(2), 660–665 (2014). doi: 10.1021/bm401714v CrossRefPubMedGoogle Scholar
  6. 6.
    Sullivan, M.A., Powell, P.O., Witt, T., Vilaplana, F., Roura, E., Gilbert, R.G.: Improving size-exclusion chromatography for glycogen. J. Chromatogr. A 1332(1), 21–29 (2014). doi: 10.1016/j.chroma.2014.01.053 CrossRefPubMedGoogle Scholar
  7. 7.
    Sullivan, M.A., O’Connor, M.J., Umana, F., Roura, E., Jack, K., Stapleton, D.I., Gilbert, R.G.: Molecular insights into glycogen alpha-particle formation. Biomacromolecules 13(11), 3805–3813 (2012). doi: 10.1021/bm3012727 CrossRefPubMedGoogle Scholar
  8. 8.
    Powell, P.O., Sullivan, M.A., Sheehy, J.J., Schultz, B.L., Warren, F.J., Gilbert, R.G.: Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps with understanding the bonding in alpha (composite) glycogen molecules. PLoS One. (2015). doi: 10.1371/journal.pone.0121337
  9. 9.
    Roesler, W.J., Khandelwal, R.L.: Age-related changes in hepatic glycogen metabolism in the genetically diabetic (db/db) mouse. Diabetes 34(4), 395–402 (1985)CrossRefPubMedGoogle Scholar
  10. 10.
    Sullivan, M.A., Li, S., Aroney, S.T., Deng, B., Li, C., Roura, E., Schulz, B.L., Harcourt, B.E., Forbes, J.M., Gilbert, R.G.: A rapid extraction method for glycogen from formalin-fixed liver. Carbohydr. Polym. 118(1), 9–15 (2015). doi: 10.1016/j.carbpol.2014.11.005 CrossRefPubMedGoogle Scholar
  11. 11.
    Powell, P.O., Sullivan, M.A., Sweedman, M.C., Stapleton, D.I., Hasjim, J., Gilbert, R.G.: Extraction, isolation and characterisation of phytoglycogen from su-1 maize leaves and grain. Carbohydr. Polym. 101(1), 423–431 (2014). doi: 10.1016/j.carbpol.2013.09.061 CrossRefPubMedGoogle Scholar
  12. 12.
    Lichti, G., Gilbert, R.G., Napper, D.H.: Mechanisms of latex particle formation and growth in the emulsion polymerization of styrene using the surfactant sodium dodecyl sulfate. J. Polym. Sci. Polym. Chem. Ed. 21, 269–291 (1983)CrossRefGoogle Scholar
  13. 13.
    Vilaplana, F., Gilbert, R.G.: Two-dimensional size/branch length distributions of a branched polymer. Macromolecules 43(17), 7321–7329 (2010). doi: 10.1021/ma101349t CrossRefGoogle Scholar
  14. 14.
    Gilbert, R.G., Sullivan, M.A.: The molecular size distribution of glycogen and its relevance to diabetes (review). Aust. J. Chem. 67(4), 538–543 (2014). doi: 10.1071/CH13573 CrossRefGoogle Scholar
  15. 15.
    Varrot, A., Basheer, S.M., Imberty, A.: Fungal lectins: structure, function and potential applications. Curr. Opin. Struct. Biol. 23(5), 678–685 (2013). doi: 10.1016/ CrossRefPubMedGoogle Scholar
  16. 16.
    Arnaud, J., Audfray, A., Imberty, A.: Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem. Soc. Rev. 42(11), 4798–4813 (2013). doi: 10.1039/c2cs35435g CrossRefPubMedGoogle Scholar
  17. 17.
    Crouzier, T., Beckwitt, C.H., Ribbeck, K.: Mucin multilayers assembled through sugar-lectin interactions. Biomacromolecules 13(10), 3401–3408 (2012). doi: 10.1021/Bm301222f CrossRefPubMedGoogle Scholar
  18. 18.
    He, S., Simpson, B.K., Ngadi, M.O., Xue, S.J., Shi, J., Ma, Y.: pH stability study of lectin from black turtle bean (Phaseolus vulgaris) as influenced by guanidinium-HCl and thermal treatment. Protein Peptide Lett 22(1), 45–51 (2015)Google Scholar
  19. 19.
    Pusztai, A., Grant, G.: Assessment of lectin inactivation by heat and digestion. Methods Mol. Med. 9, 505–514 (1998). doi: 10.1385/0-89603-396-1:505 PubMedGoogle Scholar
  20. 20.
    Roach, P.J., Depaoli-Roach, A.A., Hurley, T.D., Tagliabracci, V.S.: Glycogen and its metabolism: some new developments and old themes. Biochem. J. 441(3), 763–787 (2012). doi: 10.1042/BJ20111416 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bin Deng
    • 1
  • Mitchell A. Sullivan
    • 1
    • 2
  • Jialun Li
    • 3
  • Xinle Tan
    • 1
  • Chengjun Zhu
    • 2
  • Benjamin L. Schulz
    • 4
  • Robert G. Gilbert
    • 1
    • 2
  1. 1.School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneAustralia
  3. 3.Department of Plastic Surgery, Wuhan Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  4. 4.School of Chemistry and Molecular Biosciences, Faculty of ScienceThe University of QueenslandBrisbaneAustralia

Personalised recommendations