Glycoconjugate Journal

, Volume 30, Issue 7, pp 677–685 | Cite as

Effects of cell surface α2-3 sialic acid on osteogenesis



A cell culture model of osteoblast differentiation was applied in our study of the effect of sialic acid on the osteogenesis by using the pre-osteoblast of MC3T3-E1 subclone 14 cells. Following the treatment of different concentrations of α2,3-neuraminidase, which specifically removed the α2-3 sialic acid from cell surface, a significant decrease of α2-3 sialic acid was detected with fluorescein isothiocyanate (FITC)-labeled Maackia amurensis lectin (MAL-II) by flow cytometry analysis. von Kossa staining showed that the bone mineralization decreased in MC3T3-E1 subclone 14 cells after the treatment of α2,3-neuraminidase for 2 weeks. However α2,3-neuraminidase did not affect the formation of osteoblasts in MC3T3-E1 subclone 14 cells, which was demonstrated by positive alkaline phosphatase (ALP)-staining. Characteristic biological markers and osteoblast-like cell-related factors of osteoblastic cells were also examined. Both RT-PCR and Western blot analysis demonstrated that the expression of bone sialoprotein (BSP), osteoprotegerin (OPG), and vitamin D receptor (VDR) were significantly decreased when α2-3 sialic acid expression decreased on the cell surface, while the expression of osteocalcin (OC) and osteopontin (OPN) remained unchanged. We propose a hypothesis that α2-3 sialic acid affects bone mineralization but not osteogenic differentiation.


MC3T3-E1 subclone 14 Osteoblasts α2-3 sialic acid α2,3-neuraminidase 



Sialic acid


Maackia amurensis leukoagglutinin II


Alkaline phosphatase






Bone sialoprotein




Reverse transcription-polymerase chain reaction


Colony forming unit-fibroblast


Extracellular matrix


Bone morphogenetic protein


Vitamin D receptor



This work was supported by the National Natural Science Foundation of China (K113408511, 30670462, 81172347), the Innovation Project of National Undergraduate Students of China, and the Innovation Project of Soochow University of China (5731515911).


  1. 1.
    Varki, N.M., Varki, A.: Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab. Investig. 87, 851–857 (2007)PubMedCrossRefGoogle Scholar
  2. 2.
    Meesmann, H.M., Fehr, E.M., Kierschke, S., Herrm, M., Bilyy, R., Heyde, P., Blan, N., Krienke, S., Loren, H.M., Schiller, M.: Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J. Cell. Sci. 123, 3347–3356 (2010)PubMedCrossRefGoogle Scholar
  3. 3.
    Stanley, P., Cummings, R.S.: Structures common to different glycans. In: Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E. (eds.) Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, New York (2009)Google Scholar
  4. 4.
    Mathieu, S., Prorok, M., Benoliel, A.M., Uch, R., Langlet, C., Bongrand, P., Gerolami, R., El-Battari, A.: Transgene expression of alpha(1,2)-fucosyltransferase-I (FUT1) in tumor cells selectively inhibits sialyl-Lewis x expression and binding to E-selectin without affecting synthesis of sialyl-Lewis a or binding to P-selectin. Am. J. Pathol. 164, 371–383 (2004)PubMedCrossRefGoogle Scholar
  5. 5.
    Kannagi, R.: Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression—the Warburg effect revisited. Glycoconj. J. 20, 353–364 (2004)PubMedCrossRefGoogle Scholar
  6. 6.
    Li, W., Ding, Q.W., Jiang, Z., Xu, L., Wu, S.L.: A preliminary study on the effects of membrane α2,3 polysialic acid residues on human gastric cancer cell AGS’s growth and migration and several related genes’ expression. Chin. J. Hemorheol. 3, 353–355 (2010)Google Scholar
  7. 7.
    Taipaleenmäki, H., Bjerre Hokland, L., Chen, L., Kauppinen, S., Kassem, M.: Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur. J. Endocrinol. 166, 359–371 (2012)PubMedCrossRefGoogle Scholar
  8. 8.
    Wang, J., Glimcher, M.J., Mah, J., Zhou, H.Y., Salih, E.: Expression of bone microsomal casin Kinas II, bone sialoprotein and osteopontin during the repair of calvarial defects. Bone 22, 621–628 (1998)PubMedCrossRefGoogle Scholar
  9. 9.
    Bancroft, J.D., Alan, S.: A Theory and Practice of Histological Techniques, 4th edn, pp. 309–339. Churchill Livingstones, New York (1996)Google Scholar
  10. 10.
    Manolagas, S.C., Jilka, R.L.: Bone marrow, cytokines and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med. 332, 305–311 (1995)PubMedCrossRefGoogle Scholar
  11. 11.
    Zheng, M.H., Wood, D.J., Papadimitrion, J.M.: What’s new in the role of cytokines on osteoblast proliferation and differentiation. Pathol. Res. Pract. 188, 1104–1121 (1992)PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, D., Christensen, K., Chawla, K., Xiao, G., Krebsbach, P.H., Franceschi, R.T.: Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14, 893–903 (1999)PubMedCrossRefGoogle Scholar
  13. 13.
    Chenc, S.L., Zhang, S.F., Mohan, S., Lecanda, F., Fausto, A., Hunt, A.H., Canalis, E., Avioli, L.V.: Regulation of insulin-like growth factors Iand IIand their binding proteins in human bone marrow stromal cells by dexamethasone. J. Cell. Biochem. 71, 449–458 (1998)CrossRefGoogle Scholar
  14. 14.
    Maniatopoulos, C., Sodek, J., Melcher, A.H.: Bone formation in vitro by stromal cell obtained from bone marrow of young adult rat. Cell Tissue Res. 254, 317–330 (1998)Google Scholar
  15. 15.
    Peter, H.S.: Exploring life’s sweet spot. Nature 437, 1239 (2005)CrossRefGoogle Scholar
  16. 16.
    Lloyd, R.C., Davis, B.G., Jones, J.B.: Site-selective glycosylation of subtilisin bacillus lentus cause dramatic increases in esterase activity. Bioorg. Med. Chem. 8, 1537–1544 (2000)PubMedCrossRefGoogle Scholar
  17. 17.
    Wuttke, M., Muller, S., Nitsche, D.P., Paulsson, M., Hanisch, F.G., Maurer, P.: Structural characterization of human recombinant and bone-derived bone sialoprotein. Functional implications for cell attachment and hydroxyapatite binding. J. Biol. Chem. 276, 36839–36848 (2001)PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang, W.G., Wang, L.Z., Liu, Z.: The effect of fluoride on bone extracellular matrix proteins expression in rat calvarial osteoblast in culture. Shanghai J. Stomatol. 7(103), 94–98 (1998)Google Scholar
  19. 19.
    Lian, J., Stewart, C., Puchacz, E., Mackowiak, S., Shalhoub, V., Collart, D., Zambetti, G., Stein, G.: Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc. Natl. Acad. Sci. U. S. A. 86, 1143–1147 (1989)PubMedCrossRefGoogle Scholar
  20. 20.
    Lucotte, G., Mercier, G., Birckel, A.: The vitamin D receptor FokI start coden polymorphism and bone mineral density in osteoporotic postmenopausal French women. Clin. Genet. 56(3), 221–224 (1999)PubMedCrossRefGoogle Scholar
  21. 21.
    Nguyen, T.V., Kelly, P.J., Morrison, N.A.: Vitamin D receptor genotypesin osteoporosis. Lancet 344(8936), 1580–1581 (1994)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, School of MedicineSoochow UniversitySuzhouChina
  2. 2.Division of Orthopaedic Surgery, The Second Affiliated Hospital, School of MedicineSoochow UniversitySuzhouChina
  3. 3.Department of Cell Biology, School of MedicineSoochow UniversitySuzhouChina
  4. 4.Department of Cell Biology, School of MedicineSoochow UniversitySuzhouChina

Personalised recommendations