Glycoconjugate Journal

, Volume 30, Issue 5, pp 473–484 | Cite as

Neutralization of B. anthracis toxins during ex vivo phagocytosis

  • Olga Tarasenko
  • Ashley Scott
  • April Jones
  • Lee Soderberg
  • Pierre Alusta


Glycoconjugates (GCs) are recognized as stimulation and signaling agents, affecting cell adhesion, activation, and growth of living organisms. Among GC targets, macrophages are considered ideal since they play a central role in inflammation and immune responses against foreign agents. In this context, we studied the effects of highly selective GCs in neutralizing toxin factors produced by B. anthracis during phagocytosis using murine macrophages. The effects of GCs were studied under three conditions: A) prior to, B) during, and C) following exposure of macrophages to B. anthracis individual toxin (protective antigen [PA], edema factor [EF], lethal factor [LF] or toxin complexes (PA-EF-LF, PA-EF, and PA-LF). We employed ex vivo phagocytosis and post-phagocytosis analysis including direct microscopic observation of macrophage viability, and macrophage activation. Our results demonstrated that macrophages are more prone to adhere to GC-altered PA-EF-LF, PA-EF, and PA-LF toxin complexes. This adhesion results in a higher phagocytosis rate and toxin complex neutralization during phagocytosis. In addition, GCs enhance macrophage viability, activate macrophages, and stimulate nitric oxide (NO) production. The present study may be helpful in identifying GC ligands with toxin-neutralizing and/or immunomodulating properties. In addition, our study could suggest GCs as new targets for existing vaccines and the prospective development of vaccines and immunomodulators used to combat the effects of B. anthracis.


B. anthracis Protective antigen (PA) Lethal factor (LF) Edema factor (EF) Toxin Glycoconjugate Recognition Macrophage Phagocytosis Neutralization 



Glycoconjugate-polyacrylamide-fluorescein polymer




Galα1-3GalNAcα-PAA-flu glycoconjugate


Fucα1-3GlcNAcβ-PAA-flu glycoconjugate














Lactate dehydrogenase


Nitric oxide




Anthrax toxin receptor


Protective antigen


Lethal factor


Edema factor


Edema toxin (protective antigen-edema factor [PA-EF])


Lethal toxin (protective antigen-lethal factor [PA-LF])



The present study was supported in part by the Kathleen Thomsen Hall Charitable Trust Grant awarded to Dr. Tarasenko. This study conformed to the IBC protocol # 09049, the UALR IACUC protocol # R-11-01 and the UAMS IACUC protocol # 2985. The authors extend their appreciation to the editors and reviewers, whose comments and suggestions were most helpful in making this manuscript a more solid one for publication in the Glycoconjugate Journal.


  1. 1.
    Pile, J.C., Malone, J.D., Eitzen, E.M., Friedlander, A.M.: Anthrax as a potential biological warfare agent. Arch. Intern. Med. 158, 429–434 (1998)PubMedCrossRefGoogle Scholar
  2. 2.
    Inglesby, T.V., Henderson, D.A., Bartlett, J.G.: Anthrax as a biological weapon: medical and public health management. J.A.M.A. 281, 1735–1745 (1999)PubMedCrossRefGoogle Scholar
  3. 3.
    Friedlander, A.M.: Anthrax: clinical features, pathogenesis, and potential biological warfare threat. Curr. Clin. Top. Infect. Dis. 20, 335–349 (2000)PubMedGoogle Scholar
  4. 4.
    Inglesby, T.V., O’Toole, T., Henderson, D.A., Bartlett, J.G., Ascher, M.S., Eitzen, E., Friedlander, A.M., Gerberding, J., Hauer, J., Hughes, J., McDade, J., Osterholm, M.T., Parker, G., Perl, T.M., Russell, P.K., Tonat, K.: Anthrax as a biological weapon. J.A.M.A. 287, 2236–2252 (2002)PubMedCrossRefGoogle Scholar
  5. 5.
    Christopher, G.W., Cieslack, T.J., Pavlin, J.A.: Biological warfare: a historical perspective. J.A.M.A. 278, 412–417 (1997)PubMedCrossRefGoogle Scholar
  6. 6.
    Mikesell, P., Ivins, B.E., Ristroph, J.D., Dreier, T.M.: Evidence for plasmid mediated toxin production in Bacillus anthracis. Infect. Immun. 39, 371–376 (1983)PubMedGoogle Scholar
  7. 7.
    Green, B.D., Battisti, L., Koehler, T.M., Thorne, C.B., Ivins, B.E.: Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 49, 291–297 (1985)PubMedGoogle Scholar
  8. 8.
    Pezard, C., Berche, P., Mock, M.: Contribution of individual toxin components to virulence of Bacillus anthracis. Infect. Immun. 59, 3472–3477 (1991)PubMedGoogle Scholar
  9. 9.
    Welkos, S.L.: Plasmid-associated virulence factors of nontoxigenic (pX01) Bacillus anthracis. Microbiol. Pathol. 10, 183–198 (1991)CrossRefGoogle Scholar
  10. 10.
    Schembri, M.A., Dalsgaard, D., Klemm, P.: Capsule shields the function of short bacterial adhesins. J. Bacteriol. 186, 1249–1257 (2004)PubMedCrossRefGoogle Scholar
  11. 11.
    Brossier, F., Mock, M.: Toxins of Bacillus anthracis. Toxicon 39, 1747–1755 (2001)PubMedCrossRefGoogle Scholar
  12. 12.
    Collier, R.J., Young, J.A.: Anthrax toxin. Ann. Rev. Cell Dev. Biol. 19, 45–70 (2003)CrossRefGoogle Scholar
  13. 13.
    Stanley, J.L., Smith, H.: Purification of factor I and recognition of a third factor of anthrax toxin. J. Gen. Microbiol. 26, 49–66 (1961)PubMedCrossRefGoogle Scholar
  14. 14.
    Leppla, S.H., Frankel, A.E.: Anthrax toxins induce shock in rats by depressed cardiac ventricular function. PLoS ONE 2, e466 (2007)PubMedCrossRefGoogle Scholar
  15. 15.
    Friedlander, A.M.: Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261, 7123–7126 (1986)PubMedGoogle Scholar
  16. 16.
    Popov, S.G., Villasmil, R., Bernardi, J., Grene, E., Cardwell, J., Popova, T., Wu, A., Alibek, A., Bailey, C., Alibek, K.: Effect of Bacillus anthracis lethal toxin on human peripheral blood mononuclear cells. FEBS Lett. 527, 211–215 (2002)PubMedCrossRefGoogle Scholar
  17. 17.
    Singh, Y., Leppla, S.H., Bhatnagar, R., Friedlander, A.M.: Internalization and processing of Bacillus anthracis lethal toxin by toxin-sensitive and -resistant cells. J. Biol. Chem. 264, 11099–11102 (1989)PubMedGoogle Scholar
  18. 18.
    Cote, C.K., Rossi, C.A., Kang, A.S., Morrow, P.R., Lee, J.S., Welkos, S.L.: The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb. Pathog. 38, 209–225 (2005)PubMedCrossRefGoogle Scholar
  19. 19.
    Bradley, K.A., Young, J.A.: Anthrax toxin receptor proteins. Biochem. Pharmacol. 65, 309–14 (2003)PubMedCrossRefGoogle Scholar
  20. 20.
    Bonuccelli, G., Sotgia, F., Frank, P.G., Williams, T.M., de Almeida, C.J., Tanowitz, H.B., Sherer, P.E., Hotchkiss, K.A., Terman, B.I., Rollman, B., Alileche, A., Brojatsch, J., Lisanti, M.P.: Anthrax toxin receptor (ATR/TEM8) is highly expressed in epithelial cells lining the toxin’s three sites of entry (lungs, skin, and intestine). Am. J. Physiol. Cell Physiol. 288, C1402–C1410 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    Scobie, H.M., Rainey, G.J., Bradley, K.A., Young, J.A.: Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. P.N.A.S. 100, 5170–5174 (2003)PubMedCrossRefGoogle Scholar
  22. 22.
    Young, J.A., Collier, R.J.: Anthrax toxin: receptor-binding, internalization, pore formation, and translocation. Ann. Rev. Biochem. 76, 243–265 (2007)PubMedCrossRefGoogle Scholar
  23. 23.
    Duesbery, N.S., Vande Woude, G.F.: Anthrax toxins. Cell. Mol. Life. Sci. 55, 1599–1609 (1999)PubMedCrossRefGoogle Scholar
  24. 24.
    Guidi-Rontani, C., Mock, M.: Macrophage interactions. Curr. Top. Microbiol. Immunol. 271, 115–141 (2002)PubMedCrossRefGoogle Scholar
  25. 25.
    Cui, X., Li, Y., Li, X.: Bacillus anthracis edema and lethal toxin have different hemodynamic effects but function together to worsen shock and outcome in a rat model. J. Infect. Dis. 195, 471–473 (2007)CrossRefGoogle Scholar
  26. 26.
    Tarasenko, O., Islam, S., Paquiot, D., Levon, K.: Glycoconjugates for recognition of Bacillus spores. Carb. Res. 339, 2859–2870 (2004)CrossRefGoogle Scholar
  27. 27.
    Tarasenko, O., Burton, E., Soderberg, L., Alusta, P.: Polymeric glycoconjugates protect and activate macrophages to promote killing of Bacillus cereus spores during phagocytosis. Glycoconj. J. 25, 473–480 (2008)PubMedCrossRefGoogle Scholar
  28. 28.
    Tarasenko, O., Scott, A., Soderberg, S., Ponnappan, U., Alusta, P.: Killing of Bacillus spores is mediated by nitric oxide and nitric oxide synthase during glycoconjugate—enhanced phagocytosis. Glycoconj. J. 27(1), 13–25 (2010)PubMedCrossRefGoogle Scholar
  29. 29.
    Tarasenko, O., Soderberg, L., Hester, K., Park Kim, M., McManus, D., Alusta, P.: Glycoconjugates enhanced the intracellular killing of Bacillus spores, increasing macrophage viability and activation. Arch. Microbiol. 189, 579–587 (2008)PubMedCrossRefGoogle Scholar
  30. 30.
    Castleberry, J., Scott, A., Soderberg, L., Alusta, P., Tarasenko, O.: Nitric oxide involved in macrophage activation and neutralization of Bacillus anthracis toxins during glycoconjugate treatment. Nitric Oxide. 19, 1 (2008)CrossRefGoogle Scholar
  31. 31.
    Tarasenko, O., Scott, A., Soderberg, L., Alusta, P.: Glycoconjugates prevent B. anthracis toxin-induced cell death through binding while activating macrophages. Glycoconj. J. 29(1), 25–33 (2012)PubMedCrossRefGoogle Scholar
  32. 32.
    Keller, R., Geiges, M., Keist, R.: L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res. 50, 1421–1425 (1990)PubMedGoogle Scholar
  33. 33.
    Black, J.G.: In: Black, J.G. (ed.) Microbiology: Principles and Explorations. Wiley (2005)Google Scholar
  34. 34.
    Beauvais, F., Michel, L., Dubertret, L.: The nitric oxide donors, azide and hydroxylamine, inhibit the programmed cell death of cytokine-deprived human eosinophils. FEBS Lett. 361, 229–232 (1995)PubMedCrossRefGoogle Scholar
  35. 35.
    Choi, B.M., Pae, H.O., Jang, S.I., Kim, Y.M., Chung, H.T.: Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J. Biochem. Mol. Biol. 35, 116–126 (2002)PubMedCrossRefGoogle Scholar
  36. 36.
    Dimmelder, S., Haendeler, J., Nehls, M., Zeiher, A.M.: Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J. Exp. Med. 185, 601–607 (1997)CrossRefGoogle Scholar
  37. 37.
    Kwon, Y.G., Min, J.K., Kim, K.M., Lee, D.J., Billiar, T.R., Kim, Y.M.: Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J. Biol. Chem. 276, 10627–10633 (2001)PubMedCrossRefGoogle Scholar
  38. 38.
    Vespa, G.N.R., Cunha, F.Q., Silva, J.S.: Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect. Immun. 62, 5177–5182 (1994)PubMedGoogle Scholar
  39. 39.
    Garg, U.C., Hassid, A.: Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J. Clin. Invest. 83, 1774–1777 (1989)PubMedCrossRefGoogle Scholar
  40. 40.
    Mannick, J.B., Asano, K., Izumi, K., Kieff, E., Stamler, J.S.: Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79, 1137–1146 (1994)PubMedCrossRefGoogle Scholar
  41. 41.
    Genaro, A.M., Hortelano, S., Alvarez, A., Martinez, C., Bosca, L.: Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J. Clin. Invest. 95, 1884–1890 (1995)PubMedCrossRefGoogle Scholar
  42. 42.
    Messmer, U.K., Ankarcrona, M., Nicotera, P., Brune, B.: p53 expression in nitric oxide-induced apoptosis. FEBS Lett. 355, 23–26 (1995)CrossRefGoogle Scholar
  43. 43.
    Gunasekar, P.G., Kanthasamy, A.G., Borowitz, J.L., Isom, G.E.: NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implications for cell death. J. Neurochem. 65, 2016–2021 (1995)PubMedCrossRefGoogle Scholar
  44. 44.
    Greeberg, S., Grinstein, S.: Phagocytosis. Opin. Immunol. 14, 136–145 (2002)CrossRefGoogle Scholar
  45. 45.
    Kiessling, L.L., Pohl, N.L.: Strength in numbers: non-natural polyvalent carbohydrate derivatives. Chem. Biol. 3, 71–77 (1996)PubMedCrossRefGoogle Scholar
  46. 46.
    Kiessling, L.L., Gestwicki, J.E., Strong, L.E.: Synthetic multivalent ligands in the exploration of cell surface interactions. Curr. Opin. Chem. Biol. 6, 696–703 (2000)CrossRefGoogle Scholar
  47. 47.
    Bertozzi, C.R., Kiessling, L.L.: Chemical glycobiology. Science. 291, 2357–2364 (2001)PubMedCrossRefGoogle Scholar
  48. 48.
    Hakomori, S.: Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 50, 733–764 (1981)PubMedCrossRefGoogle Scholar
  49. 49.
    Kojima, N., Hakomori, S.: Sialyllactose-mediated cell Interaction during granulosa cell differentiation. J. Biol. Chem. 264, 20159–20162 (1989)PubMedGoogle Scholar
  50. 50.
    Kojima, N., Hakomori, S.J.: Carbohydrate-carbohydrate interaction of glycosphingolipids. J. Biol. Chem. 266, 17552–17558 (1991)PubMedGoogle Scholar
  51. 51.
    Stewart, R.J., Boggs, A.: Carbohydrate–carbohydrate interaction between galactosylceramide-containing liposomes and cerebroside sulfate-containing liposomes: dependence on the glycolipid ceramide composition. J. M. Biochem. 32, 10666–10674 (1993)CrossRefGoogle Scholar
  52. 52.
    Feizi, T.: Progress in deciphering the information content of the ‘glycome’—a crescendo in the closing years of the millennium. Glycoconj. J. 17, 553–565 (2000)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Olga Tarasenko
    • 1
  • Ashley Scott
    • 1
    • 2
  • April Jones
    • 1
  • Lee Soderberg
    • 2
  • Pierre Alusta
    • 1
    • 3
  1. 1.Department of BiologyUniversity of Arkansas at Little RockLittle RockUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of Arkansas for Medical SciencesLittle RockUSA
  3. 3.Bioinformatics ProgramUniversity of Arkansas at Little Rock and University of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations