Glycoconjugate Journal

, Volume 30, Issue 3, pp 269–279 | Cite as

Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (GNA)-related lectins

  • Lei Wu
  • Jin-ku Bao


Galanthus nivalis agglutinin (GNA)-related lectin family, a superfamily of strictly mannose-binding specific lectins widespread among monocotyledonous plants, is well-known to possess a broad range of biological functions such as anti-tumor, anti-viral and anti-fungal activities. Herein, we mainly focused on exploring the precise molecular mechanisms by which GNA-related lectins induce cancer cell apoptotic and autophagic death targeting mitochondria-mediated ROS-p38-p53 apoptotic or autophagic pathway, Ras-Raf and PI3K-Akt anti-apoptotic or anti-autophagic pathways. In addition, we further discussed the molecular mechanisms of GNA-related lectins exerting anti-viral activities by blocking the entry of the virus into its target cells, preventing transmission of the virus as well as forcing virus to delete glycan in its envelope protein and triggering neutralizing antibody. In conclusion, these findings may provide a new perspective of GNA-related lectins as potential drugs for cancer and virus therapeutics in the future.


GNA-related lectins Anti-tumor Anti-viral Drugs 



Carbohydrate binding agents

Con A

Concanavalin A




Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin


Epidermal growth factor receptor


Extracellular signal-regulated kinase


Fas-associated protein with death domain


Galanthus nivalis agglutinin




Hippeastrum hybrid agglutinin


Liparis noversa lectin


Mitogen-activated protein kinase


Mitochondrial membrane potential


Mammalian target of rapamycin


Microcystis viridis lectin


Nuclear factor–κB


Ophiopogon japonicus lectin


Programmed cell death


Polygonatum cyrtonema lectin


Phosphatidylinositol 3 kinase


Polygonatum odoratum lectin


Reactive oxygen species




Sophora flavescens lectin


Typhonium divaricatum lectin


Tumor necrosis factor-α


Urtica dioica agglutinin



We are grateful to Chun yang Li, Bo Liu, Huai long Xu (Sichuan University) for their critical reviews on this manuscript. This work was supported in part by National Natural Science Foundation of China (No. 30970643, No. 81173093 and No. J1103518).


  1. 1.
    Damme, E.J.M.V., Peumans, W.J., Barre, A., Rougé, P.: Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci. 17(6), 575–692 (1998)CrossRefGoogle Scholar
  2. 2.
    Van Damme, E.J.M., Lannoo, N., Peumans, W.J.: Plant lectins. Adv. Bot. Res. 48, 107–209 (2008)CrossRefGoogle Scholar
  3. 3.
    Wang, S.Y., Yu, Q.J., Bao, J.K., Liu, B.: Polygonatum cyrtonema lectin, a potential antineoplastic drug targeting programmed cell death pathways. Biochem. Biophys. Res. Commun. 406(4), 497–500 (2011)PubMedCrossRefGoogle Scholar
  4. 4.
    Balzarini, J., Hatse, S., Vermeire, K., Princen, K., Aquaro, S., Perno, C.F., De Clercq, E., Egberink, H., Vanden Mooter, G., Peumans, W., Van Damme, E., Schols, D.: Mannose-specific plant lectins from the Amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection. Antimicrob. Agents Chemother. 48(10), 3858–3870 (2004)PubMedCrossRefGoogle Scholar
  5. 5.
    Van Damme, E.J.M., Allen, A.K., Peumans, W.J.: Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett. 215(1), 140–144 (1987)CrossRefGoogle Scholar
  6. 6.
    Shibuya, N., Goldstein, I.J., Van Damme, E.J., Peumans, W.J.: Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J. Biol. Chem. 263(2), 728–734 (1988)PubMedGoogle Scholar
  7. 7.
    Fouquaert, E., Smith, D.F., Peumans, W.J., Proost, P., Balzarini, J., Savvides, S.N., Damme, E.J.: Related lectins from snowdrop and maize differ in their carbohydrate-binding specificity. Biochem. Biophys. Res. Commun. 380(2), 260–265 (2009)PubMedCrossRefGoogle Scholar
  8. 8.
    Barre, A., Van Damme, E.J., Peumans, W.J., Rouge, P.: Structure-function relationship of monocot mannose-binding lectins. Plant Physiol. 112(4), 1531–1540 (1996)PubMedCrossRefGoogle Scholar
  9. 9.
    Van Damme, E.J., Nakamura-Tsuruta, S., Smith, D.F., Ongenaert, M., Winter, H.C., Rouge, P., Goldstein, I.J., Mo, H., Kominami, J., Culerrier, R., Barre, A., Hirabayashi, J., Peumans, W.J.: Phylogenetic and specificity studies of two-domain GNA-related lectins: generation of multispecificity through domain duplication and divergent evolution. Biochem. J. 404(1), 51–61 (2007)PubMedCrossRefGoogle Scholar
  10. 10.
    Barre, A., Bourne, Y., Van Damme, E.J.M., Peumans, W.J., Rougé, P.: Mannose-binding plant lectins: different structural scaffolds for a common sugar-recognition process. Biochimie 83(7), 645–651 (2001)PubMedCrossRefGoogle Scholar
  11. 11.
    Ding, J., Bao, J., Zhu, D., Zhang, Y., Wang, D.C.: Crystal structures of a novel anti-HIV mannose-binding lectin from Polygonatum cyrtonema Hua with unique ligand-binding property and super-structure. J. Struct. Biol. 171(3), 309–317 (2010)PubMedCrossRefGoogle Scholar
  12. 12.
    Vandenborre, G., Smagghe, G., Van Damme, E.J.M.: Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72(13), 1538–1550 (2011)PubMedCrossRefGoogle Scholar
  13. 13.
    An, J., Liu, J.-Z., Wu, C.-F., Li, J., Dai, L., Damme, E., Balzarini, J., Clercq, E., Chen, F., Bao, J.-K.: Anti-HIV I/II activity and molecular cloning of a novel mannose/sialic acid-binding lectin from rhizome of Polygonatum cyrtonema Hua. Acta Biochim. Biophys. Sin. 38(2), 70–78 (2006)PubMedCrossRefGoogle Scholar
  14. 14.
    Liu, B., Xu, X.C., Cheng, Y., Huang, J., Liu, Y.H., Liu, Z., Min, M.W., Bian, H.J., Chen, J., Bao, J.K.: Apoptosis-inducing effect and structural basis of Polygonatum cyrtonema lectin and chemical modification properties on its mannose-binding sites. BMB Rep. 41(5), 369–375 (2008)PubMedCrossRefGoogle Scholar
  15. 15.
    Yu, Q.J., Li, Z.Y., Yao, S., Ming, M., Wang, S.Y., Liu, B., Bao, J.K.: In silico analysis of molecular mechanisms of Galanthus nivalis agglutinin-related lectin-induced cancer cell death from carbohydrate-binding motif evolution hypothesis. Appl. Biochem. Biotechnol. 165(3–4), 1037–1046 (2011)PubMedCrossRefGoogle Scholar
  16. 16.
    Liu, B., Cheng, Y., Zhang, B., Bian, H.J., Bao, J.K.: Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS-p38-p53 pathway. Cancer Lett. 275(1), 54–60 (2009)PubMedCrossRefGoogle Scholar
  17. 17.
    Liu, B., Wu, J.M., Li, J., Liu, J.J., Li, W.W., Li, C.Y., Xu, H.L., Bao, J.K.: Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras-Raf and PI3K-Akt signaling pathways. Biochimie 92(12), 1934–1938 (2010)PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang, Z.T., Peng, H., Li, C.Y., Liu, J.J., Zhou, T.T., Yan, Y.F., Li, Y., Bao, J.K.: Polygonatum cyrtonema lectin induces murine fibrosarcoma L929 cell apoptosis via a caspase-dependent pathway as compared to Ophiopogon japonicus lectin. Phytomedicine 18(1), 25–31 (2010)PubMedCrossRefGoogle Scholar
  19. 19.
    Liu, B., Peng, H., Yao, Q., Li, J., Van Damme, E., Balzarini, J., Bao, J.K.: Bioinformatics analyses of the mannose-binding lectins from Polygonatum cyrtonema, Ophiopogon japonicus and Liparis noversa with antiproliferative and apoptosis-inducing activities. Phytomedicine 16(6–7), 601–608 (2009)PubMedCrossRefGoogle Scholar
  20. 20.
    Liu, B., Zhang, B., Min, M.W., Bian, H.J., Chen, L.F., Liu, Q., Bao, J.K.: Induction of apoptosis by Polygonatum odoratum lectin and its molecular mechanisms in murine fibrosarcoma L929 cells. Biochim. Biophys. Acta 1790(8), 840–844 (2009)PubMedCrossRefGoogle Scholar
  21. 21.
    Ji, X., Gewurz, H., Spear, G.T.: Mannose binding lectin (MBL) and HIV. Mol. Immunol. 42(2), 145–152 (2005)PubMedCrossRefGoogle Scholar
  22. 22.
    Saidi, H., Nasreddine, N., Jenabian, M.A., Lecerf, M., Schols, D., Krief, C., Balzarini, J., Belec, L.: Differential in vitro inhibitory activity against HIV-1 of alpha-(1-3)- and alpha-(1-6)-D-mannose specific plant lectins: implication for microbicide development. J. Transl. Med. 5, 28 (2007)PubMedCrossRefGoogle Scholar
  23. 23.
    Luo, Y., Xu, X., Liu, J., Li, J., Sun, Y., Liu, Z., Van Damme, E., Balzarini, J., Bao, J.: A novel mannose-binding tuber lectin from Typhonium divaricatum (L.) Decne (family Araceae) with antiviral activity against HSV-II and anti-proliferative effect on human cancer cell lines. J. Biochem. Mol. Biol. 40(3), 358–367 (2007)PubMedCrossRefGoogle Scholar
  24. 24.
    Fu, L.L., Zhou, C.C., Yao, S., Yu, J.Y., Liu, B., Bao, J.K.: Plant lectins: targeting programmed cell death pathways as antitumor agents. Int. J. Biochem. Cell Biol. 43(10), 1442–1449 (2011)PubMedCrossRefGoogle Scholar
  25. 25.
    Liu, B., Bian, H.J., Bao, J.K.: Plant lectins: potential antineoplastic drugs from bench to clinic. Cancer Lett. 287(1), 1–12 (2010)PubMedCrossRefGoogle Scholar
  26. 26.
    Balzarini, J.: Carbohydrate-binding agents: a potential future cornerstone for the chemotherapy of enveloped viruses? Antivir. Chem. Chemother. 18(1), 1–11 (2007)PubMedGoogle Scholar
  27. 27.
    Yarasi, B., Sadumpati, V., Immanni, C.P., Vudem, D.R., Khareedu, V.R.: Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests. BMC Plant Biol. 8, 102 (2008)PubMedCrossRefGoogle Scholar
  28. 28.
    Yao, J., Pang, Y., Qi, H., Wan, B., Zhao, X., Kong, W., Sun, X., Tang, K.: Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids. Transgenic Res. 12(6), 715–722 (2003)PubMedCrossRefGoogle Scholar
  29. 29.
    Chen, Z., Pang, Y., Liu, X., Wang, X., Deng, Z., Sun, X., Tang, K.: Molecular cloning and characterization of a novel mannose-binding lectin cDNA from Zantedeschia aethiopica. Biocell 29(2), 187–193 (2005)PubMedGoogle Scholar
  30. 30.
    Xu, Q., Liu, Y., Wang, X., Gu, H., Chen, Z.: Purification and characterization of a novel anti-fungal protein from Gastrodia elata. Plant Physiol. Biochem. 36(12), 899–905 (1998)CrossRefGoogle Scholar
  31. 31.
    Thorburn, A.: Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13(1), 1–9 (2008)PubMedCrossRefGoogle Scholar
  32. 32.
    Elmore, S.: Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35(4), 495–516 (2007)PubMedCrossRefGoogle Scholar
  33. 33.
    Liu, B., Cheng, Y., Liu, Q., Bao, J.K., Yang, J.M.: Autophagic pathways as new targets for cancer drug development. Acta Pharmacol. Sin. 31(9), 1154–1164 (2010)PubMedCrossRefGoogle Scholar
  34. 34.
    Xu, X., Wu, C., Liu, C., Luo, Y., Li, J., Zhao, X., Van Damme, E., Bao, J.: Purification and characterization of a mannose-binding lectin from the rhizomes of Aspidistra elatior blume with antiproliferative activity. Acta Biochim. Biophys. Sin. 39(7), 507–519 (2007)PubMedCrossRefGoogle Scholar
  35. 35.
    Karasaki, Y., Tsukamoto, S., Mizusaki, K., Sugiura, T., Gotoh, S.: A garlic lectin exerted an antitumor activity and induced apoptosis in human tumor cells. Food Res. Int. 34(1), 7–13 (2001)CrossRefGoogle Scholar
  36. 36.
    Wang, H., Ng, T.B., Ooi, V.E., Liu, W.K.: Effects of lectins with different carbohydrate-binding specificities on hepatoma, choriocarcinoma, melanoma and osteosarcoma cell lines. Int. J. Biochem. Cell Biol. 32(3), 365–372 (2000)PubMedCrossRefGoogle Scholar
  37. 37.
    Gupta, A., Sandhu, R.S.: A new high molecular weight agglutinin from garlic (Allium sativum). Mol. Cell. Biochem. 166(1–2), 1–9 (1997)PubMedCrossRefGoogle Scholar
  38. 38.
    Li, W.W., Yu, J.Y., Xu, H.L., Bao, J.K.: Concanavalin A: a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics. Biochem. Biophys. Res. Commun. 414(2), 282–286 (2011)PubMedCrossRefGoogle Scholar
  39. 39.
    Li, C.-Y., Meng, L., Liu, B., Bao, J.-K.: Galanthus nivalis agglutinin (GNA)-related lectins: traditional proteins, burgeoning drugs? Curr. Chem. Biol. 3(3), 323–333 (2009)CrossRefGoogle Scholar
  40. 40.
    Santarpia, L., El-Naggar, A.K., Cote, G.J., Myers, J.N., Sherman, S.I.: Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 93(1), 278–284 (2008)PubMedCrossRefGoogle Scholar
  41. 41.
    Downward, J.: PI 3-kinase, Akt and cell survival. Semin. Cell Dev. Biol. 15(2), 177–182 (2004)PubMedCrossRefGoogle Scholar
  42. 42.
    Roy, S.K., Srivastava, R.K., Shankar, S.: Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J. Mol. Signal. 5, 10 (2010)PubMedCrossRefGoogle Scholar
  43. 43.
    Meloche, S., Pouyssegur, J.: The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26(22), 3227–3239 (2007)PubMedCrossRefGoogle Scholar
  44. 44.
    Peng, H., Lv, H., Wang, Y., Liu, Y.H., Li, C.Y., Meng, L., Chen, F., Bao, J.K.: Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities. Peptides 30(10), 1805–1815 (2009)PubMedCrossRefGoogle Scholar
  45. 45.
    O'Keefe, B.R., Beutler, J.A., Cardellina 2nd, J.H., Gulakowski, R.J., Krepps, B.L., McMahon, J.B., Sowder 2nd, R.C., Henderson, L.E., Pannell, L.K., Pomponi, S.A., Boyd, M.R.: Isolation and characterization of niphatevirin, a human-immunodeficiency-virus-inhibitory glycoprotein from the marine sponge Niphates erecta. Eur. J. Biochem. 245(1), 47–53 (1997)PubMedCrossRefGoogle Scholar
  46. 46.
    Gattegno, L., Ramdani, A., Jouault, T., Saffar, L., Gluckman, J.C.: Lectin-carbohydrate interactions and infectivity of human immunodeficiency virus type 1 (HIV-1). AIDS Res. Hum. Retrovir. 8(1), 27–37 (1992)PubMedCrossRefGoogle Scholar
  47. 47.
    Balzarini, J., Van Laethem, K., Hatse, S., Froeyen, M., Peumans, W., Van Damme, E., Schols, D.: Carbohydrate-binding agents cause deletions of highly conserved glycosylation sites in HIV GP120: a new therapeutic concept to hit the achilles heel of HIV. J. Biol. Chem. 280(49), 41005–41014 (2005)PubMedCrossRefGoogle Scholar
  48. 48.
    Balzarini, J.: Inhibition of HIV entry by carbohydrate-binding proteins. Antivir. Res. 71(2–3), 237–247 (2006)PubMedCrossRefGoogle Scholar
  49. 49.
    Balzarini, J., Neyts, J., Schols, D., Hosoya, M., Van Damme, E., Peumans, W., De Clercq, E.: The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antivir. Res. 18(2), 191–207 (1992)PubMedCrossRefGoogle Scholar
  50. 50.
    Smeets, K., Van Damme, E.J., Van Leuven, F., Peumans, W.J.: Isolation, characterization and molecular cloning of a leaf-specific lectin from ramsons (Allium ursinum L.). Plant Mol. Biol. 35(4), 531–535 (1997)PubMedCrossRefGoogle Scholar
  51. 51.
    Van Damme, E.J., Barre, A., Rouge, P., Van Leuven, F., Balzarini, J., Peumans, W.J.: Molecular cloning of the lectin and a lectin-related protein from common Solomon’s seal (Polygonatum multiflorum). Plant Mol. Biol. 31(3), 657–672 (1996)PubMedCrossRefGoogle Scholar
  52. 52.
    Wright, L.M., Van Damme, E.J., Barre, A., Allen, A.K., Van Leuven, F., Reynolds, C.D., Rouge, P., Peumans, W.J.: Isolation, characterization, molecular cloning and molecular modelling of two lectins of different specificities from bluebell (Scilla campanulata) bulbs. Biochem. J. 340(Pt 1), 299–308 (1999)PubMedCrossRefGoogle Scholar
  53. 53.
    Liu, J., Xu, X., Balzarini, J., Luo, Y., Kong, Y., Li, J., Chen, F., Van Damme, E., Bao, J.: A novel tetrameric lectin from Lycoris aurea with four mannose binding sites per monomer. Acta Biochim. Pol. 54(1), 159–166 (2007)PubMedGoogle Scholar
  54. 54.
    Tilton, J.C., Doms, R.W.: Entry inhibitors in the treatment of HIV-1 infection. Antivir. Res. 85(1), 91–100 (2010)PubMedCrossRefGoogle Scholar
  55. 55.
    De Clercq, E.: New anti-HIV agents and targets. Med. Res. Rev. 22(6), 531–565 (2002)PubMedCrossRefGoogle Scholar
  56. 56.
    Dimitrov, A.S., Louis, J.M., Bewley, C.A., Clore, G.M., Blumenthal, R.: Conformational changes in HIV-1 gp41 in the course of HIV-1 envelope glycoprotein-mediated fusion and inactivation. Biochemistry 44(37), 12471–12479 (2005)PubMedCrossRefGoogle Scholar
  57. 57.
    Pollakis, G., Kang, S., Kliphuis, A., Chalaby, M.I., Goudsmit, J., Paxton, W.A.: N-linked glycosylation of the HIV type-1 gp120 envelope glycoprotein as a major determinant of CCR5 and CXCR4 coreceptor utilization. J. Biol. Chem. 276(16), 13433–13441 (2001)PubMedCrossRefGoogle Scholar
  58. 58.
    Singh, S., Ni, J., Wang, L.-X.: Chemoenzymatic synthesis of high-mannose type HIV-1 gp120 glycopeptides. Bioorg. Med. Chem. Lett. 13(3), 327–330 (2003)PubMedCrossRefGoogle Scholar
  59. 59.
    Sacchettini, J.C., Baum, L.G., Brewer, C.F.: Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry 40(10), 3009–3015 (2001)PubMedCrossRefGoogle Scholar
  60. 60.
    Yee, M., Konopka, K., Balzarini, J., Duzgunes, N.: Inhibition of HIV-1 Env-mediated cell-cell fusion by lectins, peptide T-20, and neutralizing antibodies. Open Virol. J. 5, 44–51 (2011)PubMedCrossRefGoogle Scholar
  61. 61.
    Colmenares, M., Puig-Kroger, A., Pello, O.M., Corbi, A.L., Rivas, L.: Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes. J. Biol. Chem. 277(39), 36766–36769 (2002)PubMedCrossRefGoogle Scholar
  62. 62.
    Snyder, G.A., Ford, J., Torabi-Parizi, P., Arthos, J.A., Schuck, P., Colonna, M., Sun, P.D.: Characterization of DC-SIGN/R interaction with human immunodeficiency virus type 1 gp120 and ICAM molecules favors the receptor’s role as an antigen-capturing rather than an adhesion receptor. J. Virol. 79(8), 4589–4598 (2005)PubMedCrossRefGoogle Scholar
  63. 63.
    Lozach, P.Y., Burleigh, L., Staropoli, I., Amara, A.: The C type lectins DC-SIGN and L-SIGN: receptors for viral glycoproteins. Methods Mol. Biol. 379, 51–68 (2007)PubMedCrossRefGoogle Scholar
  64. 64.
    Lozach, P.Y., Amara, A., Bartosch, B., Virelizier, J.L., Arenzana-Seisdedos, F., Cosset, F.L., Altmeyer, R.: C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J. Biol. Chem. 279(31), 32035–32045 (2004)PubMedCrossRefGoogle Scholar
  65. 65.
    Geijtenbeek, T.B., Kwon, D.S., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Middel, J., Cornelissen, I.L., Nottet, H.S., KewalRamani, V.N., Littman, D.R., Figdor, C.G., van Kooyk, Y.: DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5), 587–597 (2000)PubMedCrossRefGoogle Scholar
  66. 66.
    Balzarini, J.: Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nat. Rev. Microbiol. 5(8), 583–597 (2007)PubMedCrossRefGoogle Scholar
  67. 67.
    Auwerx, J., Francois, K.O., Covens, K., Van Laethem, K., Balzarini, J.: Glycan deletions in the HIV-1 gp120 V1/V2 domain compromise viral infectivity, sensitize the mutant virus strains to carbohydrate-binding agents and represent a specific target for therapeutic intervention. Virology 382(1), 10–19 (2008)PubMedCrossRefGoogle Scholar
  68. 68.
    Sato, Y., Hirayama, M., Morimoto, K., Yamamoto, N., Okuyama, S., Hori, K.: High mannose-binding lectin with preference for the cluster of alpha1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. J. Biol. Chem. 286(22), 19446–19458 (2011)PubMedCrossRefGoogle Scholar
  69. 69.
    Sandstrom, C., Berteau, O., Gemma, E., Oscarson, S., Kenne, L., Gronenborn, A.M.: Atomic mapping of the interactions between the antiviral agent cyanovirin-N and oligomannosides by saturation-transfer difference NMR. Biochemistry 43(44), 13926–13931 (2004)PubMedCrossRefGoogle Scholar
  70. 70.
    Koharudin, L.M., Furey, W., Gronenborn, A.M.: Novel fold and carbohydrate specificity of the potent anti-HIV cyanobacterial lectin from Oscillatoria agardhii. J. Biol. Chem. 286(2), 1588–1597 (2011)PubMedCrossRefGoogle Scholar
  71. 71.
    Koharudin, L.M., Gronenborn, A.M.: Structural basis of the anti-HIV activity of the cyanobacterial Oscillatoria Agardhii agglutinin. Structure 19(8), 1170–1181 (2011)PubMedCrossRefGoogle Scholar
  72. 72.
    Balzarini, J., Van Laethem, K., Peumans, W.J., Van Damme, E.J., Bolmstedt, A., Gago, F., Schols, D.: Mutational pathways, resistance profile, and side effects of cyanovirin relative to human immunodeficiency virus type 1 strains with N-glycan deletions in their gp120 envelopes. J. Virol. 80(17), 8411–8421 (2006)PubMedCrossRefGoogle Scholar
  73. 73.
    Huskens, D., Vermeire, K., Vandemeulebroucke, E., Balzarini, J., Schols, D.: Safety concerns for the potential use of cyanovirin-N as a microbicidal anti-HIV agent. Int. J. Biochem. Cell Biol. 40(12), 2802–2814 (2008)PubMedCrossRefGoogle Scholar
  74. 74.
    Mori, T., O'Keefe, B.R., Sowder 2nd, R.C., Bringans, S., Gardella, R., Berg, S., Cochran, P., Turpin, J.A., Buckheit Jr., R.W., McMahon, J.B., Boyd, M.R.: Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J. Biol. Chem. 280(10), 9345–9353 (2005)PubMedCrossRefGoogle Scholar
  75. 75.
    Ferir, G., Huskens, D., Palmer, K.E., Boudreaux, D.M., Swanson, M.M., Markovitz, D.M., Balzarini, J., Schols, D.: Combinations of griffithsin with other carbohydrate-binding agents (CBAs) demonstrate superior activity against HIV-1, HIV-2 and selected CBA-resistant HIV-1 strains. AIDS Res. Hum. Retrovir. (2012). doi: 10.1089/aid.2012.0026

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Life Sciences and Key Laboratory of Bio-resources and Eco-environmentSichuan University, Ministry of EducationChengduChina

Personalised recommendations