Glycoconjugate Journal

, Volume 30, Issue 3, pp 237–245 | Cite as

First identification and functional analysis of the human xylosyltransferase II promoter

  • Benjamin Müller
  • Christian Prante
  • Cornelius Knabbe
  • Knut Kleesiek
  • Christian Götting


Recently, we demonstrated that the human xylosyltransferase II (XT-II) has enzymatic activity and is able to catalyze the initial and rate-limiting step in the biosynthesis of glycosaminoglycans (GAGs) like chondroitin and dermatan sulfate, as well as heparan sulfate and heparin. Therefore, this enzyme also very likely assumes a crucial regulatory role in the biosynthesis of proteoglycans (PGs). In this study, we identified and characterized for the first time the XYLT2 gene promoter region and transcription factors involved in its regulation. Several binding sites for members of the Sp1 family of transcription factors were identified as being necessary for transcriptional regulation of the XYLT2 gene. This was determined by mithramycin A treatment, electrophoretic mobility shift and supershift assays, as well as numerous site-directed mutagenesis experiments. Different 5′ and 3′ deletion constructs of the predicted GC rich promoter region, which lacks a canonical TATA and CAAT box, revealed that a 177 nts proximal promoter element is sufficient and indispensable to drive the constitutive transcription in full strength in HepG2 hepatoma cells. In addition, we also detected the transcriptional start site using 5′-RACE (rapid amplification of cDNA ends). Our results provide an insight into transcriptional regulation of the XYLT2 gene and may contribute to understanding the manifold GAG-involving processes in health and disease.


Glycosaminoglycan Glycosyltransferases Proteoglycan Proteoglycan synthesis Gene regulation Transcription factors Transcription promoter HepG2 Xylosyltransferase II 



Activator protein 1/2


Hepatocyte nuclear factor 4α


Specificity protein 1/3


Xylosyltransferase I/II (mRNA and protein)


Xylosyltransferases 1/2 (human gene)


Xylosyltransferases (murine gene)






Glyceraldehyde-3-phosphate dehydrogenase


Electrophoretic mobility shift assay


Reverse transcriptase polymerase chain reaction


5′ rapid amplification of cDNA ends


Transcription factor binding sites



We thank Sarah L. Kirkby for her linguistic advice.


This work was supported by the Forschungsförderung an der Medizinischen Fakultät der Ruhr-Universität Bochum (FoRUM), Grant F609-2007.


  1. 1.
    Iozzo, R.V.: Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652 (1998)PubMedCrossRefGoogle Scholar
  2. 2.
    Iozzo, R.V., Danielson, K.G.: Transcriptional and posttranscriptional regulation of proteoglycan gene expression. Prog. Nucleic Acid Res. Mol. Biol. 62, 19–53 (1999)PubMedCrossRefGoogle Scholar
  3. 3.
    Kjellen, L., Lindahl, U.: Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443–475 (1991)PubMedCrossRefGoogle Scholar
  4. 4.
    Götting, C., Kuhn, J., Kleesiek, K.: Human xylosyltransferases in health and disease. Cell Mol. Life Sci. 64, 1498–1517 (2007)PubMedCrossRefGoogle Scholar
  5. 5.
    Schön, S., Prante, C., Bahr, C., Kuhn, J., Kleesiek, K., Götting, C.: Cloning and recombinant expression of active full-length xylosyltransferase I (XT-I) and characterization of subcellular localization of XT-I and XT-II. J. Biol. Chem. 281, 14224–14231 (2006)PubMedCrossRefGoogle Scholar
  6. 6.
    Kearns, A.E., Campbell, S.C., Westley, J., Schwartz, N.B.: Initiation of chondroitin sulfate biosynthesis: a kinetic analysis of UDP-D-xylose: core protein beta-D-xylosyltransferase. Biochemistry (Mosc). 30, 7477–7483 (1991)Google Scholar
  7. 7.
    Götting, C., Kuhn, J., Zahn, R., Brinkmann, T., Kleesiek, K.: Molecular cloning and expression of human UDP-d-Xylose:proteoglycan core protein beta-d-xylosyltransferase and its first isoform XT-II. J. Mol. Biol. 304, 517–528 (2000)PubMedCrossRefGoogle Scholar
  8. 8.
    Pönighaus, C., Ambrosius, M., Casanova, J.C., Prante, C., Kuhn, J., Esko, J.D., Kleesiek, K., Götting, C.: Human xylosyltransferase II is involved in the biosynthesis of the uniform tetrasaccharide linkage region in chondroitin sulfate and heparan sulfate proteoglycans. J. Biol. Chem. 282, 5201–5206 (2007)PubMedCrossRefGoogle Scholar
  9. 9.
    Cuellar, K., Chuong, H., Hubbell, S.M., Hinsdale, M.E.: Biosynthesis of chondroitin and heparan sulfate in chinese hamster ovary cells depends on xylosyltransferase II. J. Biol. Chem. 282, 5195–5200 (2007)PubMedCrossRefGoogle Scholar
  10. 10.
    Condac, E., Silasi-Mansat, R., Kosanke, S., Schoeb, T., Towner, R., Lupu, F., Cummings, R.D., Hinsdale, M.E.: Polycystic disease caused by deficiency in xylosyltransferase 2, an initiating enzyme of glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 104, 9416–9421 (2007)PubMedCrossRefGoogle Scholar
  11. 11.
    Roch, C., Kuhn, J., Kleesiek, K., Götting, C.: Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans. Biochem. Biophys. Res. Commun. 391, 685–691 (2009)PubMedCrossRefGoogle Scholar
  12. 12.
    Quandt, K., Frech, K., Karas, H., Wingender, E., Werner, T.: MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23, 4878–4884 (1995)PubMedCrossRefGoogle Scholar
  13. 13.
    Blume, S.W., Snyder, R.C., Ray, R., Thomas, S., Koller, C.A., Miller, D.M.: Mithramycin inhibits SP1 binding and selectively inhibits transcriptional activity of the dihydrofolate reductase gene in vitro and in vivo. J. Clin. Invest. 88, 1613–1621 (1991)PubMedCrossRefGoogle Scholar
  14. 14.
    Condac, E., Dale, G.L., Bender-Neal, D., Ferencz, B., Towner, R., Hinsdale, M.E.: Xylosyltransferase II is a significant contributor of circulating xylosyltransferase levels and platelets constitute an important source of xylosyltransferase in serum. Glycobiology 19, 829–833 (2009)PubMedCrossRefGoogle Scholar
  15. 15.
    Schön, S., Schulz, V., Prante, C., Hendig, D., Szliska, C., Kuhn, J., Kleesiek, K., Götting, C.: Polymorphisms in the xylosyltransferase genes cause higher serum XT-I activity in patients with pseudoxanthoma elasticum (PXE) and are involved in a severe disease course. J. Med. Genet. 43, 745–749 (2006)PubMedCrossRefGoogle Scholar
  16. 16.
    Schön, S., Huep, G., Prante, C., Müller, S., Christ, R., Hagena, F.W., Kuhn, J., Kleesiek, K., Götting, C.: Mutational and functional analyses of xylosyltransferases and their implication in osteoarthritis. Osteoarthr. Cartil. 14, 442–448 (2006)PubMedCrossRefGoogle Scholar
  17. 17.
    Hendig, D., Tarnow, L., Kuhn, J., Kleesiek, K., Götting, C.: Identification of a xylosyltransferase II gene haplotype marker for diabetic nephropathy in type 1 diabetes. Clin. Chim. Acta. 398, 90–94 (2008)PubMedCrossRefGoogle Scholar
  18. 18.
    Schön, S., Prante, C., Müller, S., Schöttler, M., Tarnow, L., Kuhn, J., Kleesiek, K., Götting, C.: Impact of polymorphisms in the genes encoding xylosyltransferase I and a homologue in type 1 diabetic patients with and without nephropathy. Kidney Int. 68, 1483–1490 (2005)PubMedCrossRefGoogle Scholar
  19. 19.
    Gardiner-Garden, M., Frommer, M.: CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987)PubMedCrossRefGoogle Scholar
  20. 20.
    Butler, J.E., Kadonaga, J.T.: The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev. 16, 2583–2592 (2002)PubMedCrossRefGoogle Scholar
  21. 21.
    Zhu, J., He, F., Hu, S., Yu, J.: On the nature of human housekeeping genes. Trends Genet. 24, 481–484 (2008)PubMedCrossRefGoogle Scholar
  22. 22.
    Goto, T., Matsui, Y., Fernandes, R.J., Hanson, D.A., Kubo, T., Yukata, K., Michigami, T., Komori, T., Fujita, T., Yang, L., Eyre, D.R., Yasui, N.: Sp1 family of transcription factors regulates the human alpha2 (XI) collagen gene (COL11A2) in Saos-2 osteoblastic cells. J. Bone Miner. Res. 21, 661–673 (2006)PubMedCrossRefGoogle Scholar
  23. 23.
    Huber, R., Schlessinger, D., Pilia, G.: Multiple Sp1 sites efficiently drive transcription of the TATA-less promoter of the human glypican 3 (GPC3) gene. Gene 214, 35–44 (1998)PubMedCrossRefGoogle Scholar
  24. 24.
    Li, H., Melford, K., Judson, A., Bensadoun, A.: Murine glypican-4 gene structure and expression; Sp1 and Sp3 play a major role in glypican-4 expression in 3T3-F442A cells. Biochim. Biophys. Acta 1679, 141–155 (2004)PubMedGoogle Scholar
  25. 25.
    Monslow, J., Williams, J.D., Fraser, D.J., Michael, D.R., Foka, P., Kift-Morgan, A.P., Luo, D.D., Fielding, C.A., Craig, K.J., Topley, N., Jones, S.A., Ramji, D.P., Bowen, T.: Sp1 and Sp3 mediate constitutive transcription of the human hyaluronan synthase 2 gene. J. Biol. Chem. 281, 18043–18050 (2006)PubMedCrossRefGoogle Scholar
  26. 26.
    Vatsyayan, J., Peng, H.L., Chang, H.Y.: Analysis of human UDP-glucose dehydrogenase gene promoter: identification of an Sp1 binding site crucial for the expression of the large transcript. J. Biochem. 137, 703–709 (2005)PubMedCrossRefGoogle Scholar
  27. 27.
    Bontemps, Y., Vuillermoz, B., Antonicelli, F., Perreau, C., Danan, J.L., Maquart, F.X., Wegrowski, Y.: Specific protein-1 is a universal regulator of UDP-glucose dehydrogenase expression: its positive involvement in transforming growth factor-beta signaling and inhibition in hypoxia. J. Biol. Chem. 278, 21566–21575 (2003)PubMedCrossRefGoogle Scholar
  28. 28.
    Müller, B., Prante, C., Kleesiek, K., Götting, C.: Identification and characterization of the human xylosyltransferase I gene promoter region. J. Biol. Chem. 284, 30775–30782 (2009)PubMedCrossRefGoogle Scholar
  29. 29.
    Klingenhoff, A., Frech, K., Quandt, K., Werner, T.: Functional promoter modules can be detected by formal models independent of overall nucleotide sequence similarity. Bioinformatics 15, 180–186 (1999)PubMedCrossRefGoogle Scholar
  30. 30.
    Kel, A.E., Kel-Margoulis, O.V., Farnham, P.J., Bartley, S.M., Wingender, E., Zhang, M.Q.: Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors. J. Mol. Biol. 309, 99–120 (2001)PubMedCrossRefGoogle Scholar
  31. 31.
    Kel-Margoulis, O.V., Romashchenko, A.G., Kolchanov, N.A., Wingender, E., Kel, A.E.: COMPEL: a database on composite regulatory elements providing combinatorial transcriptional regulation. Nucleic Acids Res. 28, 311–315 (2000)PubMedCrossRefGoogle Scholar
  32. 32.
    Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M., Werner, T.: MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21, 2933–2942 (2005)PubMedCrossRefGoogle Scholar
  33. 33.
    Fessele, S., Maier, H., Zischek, C., Nelson, P.J., Werner, T.: Regulatory context is a crucial part of gene function. Trends Genet. 18, 60–63 (2002)PubMedCrossRefGoogle Scholar
  34. 34.
    Hughes, T.R., Tengku-Muhammad, T.S., Irvine, S.A., Ramji, D.P.: A novel role of Sp1 and Sp3 in the interferon-gamma -mediated suppression of macrophage lipoprotein lipase gene transcription. J. Biol. Chem. 277, 11097–11106 (2002)PubMedCrossRefGoogle Scholar
  35. 35.
    Suske, G.: The Sp-family of transcription factors. Gene 238, 291–300 (1999)PubMedCrossRefGoogle Scholar
  36. 36.
    Bouwman, P., Philipsen, S.: Regulation of the activity of Sp1-related transcription factors. Mol. Cell. Endocrinol. 195, 27–38 (2002)PubMedCrossRefGoogle Scholar
  37. 37.
    Li, L., He, S., Sun, J.M., Davie, J.R.: Gene regulation by Sp1 and Sp3. Biochem. Cell Biol. 82, 460–471 (2004)PubMedCrossRefGoogle Scholar
  38. 38.
    Lania, L., Majello, B., De Luca, P.: Transcriptional regulation by the Sp family proteins. Int. J. Biochem. Cell Biol. 29, 1313–1323 (1997)PubMedCrossRefGoogle Scholar
  39. 39.
    Martinez-Jimenez, C.P., Gomez-Lechon, M.J., Castell, J.V., Jover, R.: Underexpressed coactivators PGC1alpha and SRC1 impair hepatocyte nuclear factor 4 alpha function and promote dedifferentiation in human hepatoma cells. J. Biol. Chem. 281, 29840–29849 (2006)PubMedCrossRefGoogle Scholar
  40. 40.
    Müller, B., Prante, C., Kleesiek, K., Götting, C.: Identification and characterization of the human xylosyltransferase I gene promoter region. J. Biol. Chem. (2009)Google Scholar
  41. 41.
    Müller, B., Prante, C., Gastens, M., Kuhn, J., Kleesiek, K., Götting, C.: Increased levels of xylosyltransferase I correlate with the mineralization of the extracellular matrix during osteogenic differentiation of mesenchymal stem cells. Matrix Biol. 27, 139–149 (2008)PubMedCrossRefGoogle Scholar
  42. 42.
    Prante, C., Bieback, K., Funke, C., Schön, S., Kern, S., Kuhn, J., Gastens, M., Kleesiek, K., Götting, C.: The formation of extracellular matrix during chondrogenic differentiation of mesenchymal stem cells correlates with increased levels of xylosyltransferase I. Stem Cells. 24, 2252–2261 (2006)PubMedCrossRefGoogle Scholar
  43. 43.
    Prante, C., Milting, H., Kassner, A., Farr, M., Ambrosius, M., Schön, S., Seidler, D.G., Banayosy, A.E., Körfer, R., Kuhn, J., Kleesiek, K., Götting, C.: Transforming growth factor beta1-regulated xylosyltransferase I activity in human cardiac fibroblasts and its impact for myocardial remodeling. J. Biol. Chem. 282, 26441–26449 (2007)PubMedCrossRefGoogle Scholar
  44. 44.
    Pfaffl, M.W.: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Benjamin Müller
    • 1
    • 2
  • Christian Prante
    • 1
  • Cornelius Knabbe
    • 1
  • Knut Kleesiek
    • 1
  • Christian Götting
    • 1
  1. 1.Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität BochumBad OeynhausenGermany
  2. 2.Institut für Klinische Chemie, Medizinische Hochschule HannoverHannoverGermany

Personalised recommendations