Glycoconjugate Journal

, Volume 29, Issue 7, pp 481–490 | Cite as

Preferences for uptake of carbohydrate-coated liposomes by C-type lectin receptors as antigen-uptake receptors

  • Yoko Kawauchi
  • Yasuhiro Kuroda
  • Naoya Kojima


We evaluated the carbohydrate preferences of the C-type lectin receptors (CLRs) SIGNR1, SIGNR3, and Langerin as pathogen-uptake receptors based on uptake of liposomes consisting of cholesterol, DPPC, and various neoglycolipids at molar ratios of 10:10:1 and 10:7:4, respectively, using non-phagocytic CHO cells that express these receptors transiently. SIGNR1-expressing cells ingested liposomes coated with neoglycolipids with terminal mannose residues, such as Man2-, Man3-, and Man5-DPPE, and with a terminal N-acetylglucosamine. SIGNR1 mediated uptake of Man3-DPPE-coated liposomes most efficiently. Uptake of liposomes with lower neoglycolipid content by SIGNR3- or Langerin-expressing cells was slight or negligible, but uptake into these cells was detected for liposomes with higher neoglycolipid content. SIGNR1-expressing cells clearly ingested liposomes coated with Lewis X antigen, whereas SIGNR3- or Langerin-expressing cells barely ingested these liposomes, even at the higher neoglycolipid content. In contrast, SIGNR3 or Langerin, but not SIGNR1, mediated uptake of liposomes coated with blood group H antigen. These results indicate that CLRs with similar carbohydrate-recognition characteristics have distinct properties as pathogen-uptake receptors for carbohydrate-decorated particles.


Langerin Liposome Neoglycolipid Phagocytosis SIGNR1 SIGNR3 



antigen-presenting cell


biantennary N-linked core pentasaccharide


C-type lectin receptor


dendritic cell










neoglycolipids constructed with mannotriose and dipalmitoylphosphatidylethanolamine




specific ICAM-3-grabbing nonintegrin





This work was supported by a Grant-in-Aid for Special Research from The Promotion and Mutual Aid Corporation for Private Schools of Japan.


  1. 1.
    Janeway Jr., C.A.: Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989)PubMedCrossRefGoogle Scholar
  2. 2.
    Cambi, A., Figdor, G.C.: Dual function of C-type lectin-like receptors in the immune system. Curr. Opin. Cell Biol. 15, 539–546 (2003)PubMedCrossRefGoogle Scholar
  3. 3.
    Robinson, M.J., Sancho, D., Slack, E.C., LeibundGut-Landmann, S., Sausa, C.R.: Myeloid C-type lectins in innate immunity. Nat. Immunol. 12, 1258–1265 (2006)CrossRefGoogle Scholar
  4. 4.
    Avraméas, A., McIlroy, D., Hosmalin, A., Autran, B., Debré, P., Monsigny, M., Roche, A.C., Midoux, P.: Expression of a mannose/fucose membrane lectin on human dendritic cells. Eur. J. Immunol. 26, 394–400 (1996)PubMedCrossRefGoogle Scholar
  5. 5.
    Turner, M.W.: Mannose binding lectin: the pluripotent molecule of the innate immune system. Immunol. Today 17, 532–40 (1996)PubMedGoogle Scholar
  6. 6.
    Geijtenbeek, T.B., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Adema, G.J., van Kooyk, Y., Figdor, C.G.: Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000)PubMedCrossRefGoogle Scholar
  7. 7.
    Park, C.G., Takahara, K., Umemoto, E., Yashima, Y., Matsubara, K., Matsuda, Y., Clausen, B.E., Inaba, K., Steinman, R.M.: Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN. Int. Immunol. 13, 1283–1290 (2001)PubMedCrossRefGoogle Scholar
  8. 8.
    Stambach, N.S., Taylor, M.E.: Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology 13, 401–410 (2003)PubMedCrossRefGoogle Scholar
  9. 9.
    Tateno, H., Ohnishi, K., Yabe, R., Hayatsu, N., Sato, T., Takeya, M., Narimatsu, H., Hirabayasi, J.: Dual specificity of langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J. Biol. Chem. 285, 6390–6400 (2010)PubMedCrossRefGoogle Scholar
  10. 10.
    Takahara, K., Yashima, Y., Omatsu, Y., Yoshida, H., Kimura, Y., Kang, Y.S., Steinman, R.M., Park, C.G., Inaba, K.: Functional comparison of the mouse DC-SIGN, SIGNR1, SIGNR3 and Langerin, C-type lectins. Int. Immunol. 16, 819–829 (2004)PubMedCrossRefGoogle Scholar
  11. 11.
    Taylor, P.R., Brown, G.D., Herre, J., Williams, D.L., Willment, J.A., Gordon, S.: The role of SIGNR1 and the beta-glucan receptor (dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J. Immunol. 172, 1157–1162 (2004)PubMedGoogle Scholar
  12. 12.
    Nagaoka, K., Takahara, K., Minamino, K., Takeda, T., Yoshida, Y., Inaba, K.: Expression of C-type lectin, SIGNR3, on subsets of dendritic cells, macrophages, and monocytes. J. Leuk. Biol. 88, 913–924 (2010)CrossRefGoogle Scholar
  13. 13.
    Valladeau, J., Ravel, O., Dezutter-Dambuyant, C., Moore, K., Kleijmeer, M., Liu, Y., Duvert-Frances, V., Vincent, C., Schmitt, D., Davoust, J., Caux, C., Lebecque, S., Saeland, S.: Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71–81 (2000)PubMedCrossRefGoogle Scholar
  14. 14.
    Galustian, C., Park, C.G., Chai, W., Kiso, M., Brueninf, S.A., Kang, Y.S., Steinman, R.M., Feizi, T.: High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin. Int. Immunol. 16, 853–866 (2004)PubMedCrossRefGoogle Scholar
  15. 15.
    Powlesland, A.S., Ward, E.M., Sadhu, S.K., Guo, Y., Taylor, M.E., Drickamer, K.: Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins. J. Biol. Chem. 281, 20440–20449 (2006)PubMedCrossRefGoogle Scholar
  16. 16.
    Ikehara, Y., Niwa, T., Biao, L., Kabata-Ikehara, S., Ohashi, N., Kobayashi, T., Shimizu, Y., Kojima, N., Nakanishi, H.: A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res. 66, 8740–8748 (2006)PubMedCrossRefGoogle Scholar
  17. 17.
    Shimizu, Y., Yamakami, K., Gomi, T., Nakata, M., Asanuma, H., Tadakuma, T., Kojima, N.: Protection against Leishmania major infection by oligomannose-coated liposomes. Bioorg. Med. Chem. 11, 1191–1195 (2003)PubMedCrossRefGoogle Scholar
  18. 18.
    Nishikawa, Y., Zhang, H., Ikehara, Y., Kojima, N., Xuan, X., Yokoyama, N.: Immunization of oligomannose-coated liposome-entrapped NcGRA7 protects dams and offspring from Neospora caninum infection in mice. Clin. Vaccine Immunol. 16, 792–797 (2009)PubMedCrossRefGoogle Scholar
  19. 19.
    Ikehara, Y., Shiuchi, N., Kabata-Ikehara, S., Nakanishi, H., Yokoyama, N., Takagi, H., Nagata, T., Koide, Y., Kuzushima, K., Takahashi, T., Tsujimura, K., Kojima, N.: Effective induction of anti-tumor immune responses with oligomannose-coated liposome targeting to intraperitoneal macrophage. Cancer Lett. 260, 137–145 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    Ishii, M., Koyama, A., Iseki, H., Narumi, H., Yokoyama, N., Kojima, N.: Anti-allergic potential of oligomannose-coated liposome-entrapped Cry j 1 as immunotherapy for Japanese cedar pollinosis in mice. Int. Immunopharm. 10, 1041–1046 (2010)CrossRefGoogle Scholar
  21. 21.
    Takagi, H., Numazaki, M., Kajiwara, T., Abe, Y., Ishii, M., Kato, C., Kojima, N.: Cooperation of specific ICAM-3 grabbing nonintegrin related 1 (SIGNR1) and complement receptor type 3 (CR3) in uptake of oligomannose-coated liposomes by macrophages. Glycobiology 19, 258–66 (2009)PubMedCrossRefGoogle Scholar
  22. 22.
    Mizuochi, T., Loveless, R.W., Lawson, A.M., Chai, W., Lachmann, P.J., Childs, R.A., Thiel, S., Feizi, T.: A library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins reveals that conglutinin binds to certain complex type as well as high-mannose type oligosaccharide chains. J. Biol. Chem. 264, 13834–13839 (1989)PubMedGoogle Scholar
  23. 23.
    Kojima, N., Biao, L., Nakayama, T., Ishii, M., Ikehara, Y., Tsujimura, K.: Oligomannose-coated liposomes as a therapeutic antigen-delivery and an adjuvant vehicle for induction of in vivo tumor immunity. J. Control. Release 129, 26–32 (2008)PubMedCrossRefGoogle Scholar
  24. 24.
    Shimizu, Y., Nakata, M., Matsunuma, J., Mizuochi, T.: Simultaneous quantification of components of neoglycolipid-coated liposomes using high-performance liquid chromatography with evaporative light scattering detection. J. Chromatogr. B: Biomed. Sci. Appl. 754, 127–133 (2001)CrossRefGoogle Scholar
  25. 25.
    Brown, G.D., Taylor, P.R., Reid, D.M., Willment, J.A., Williams, D.L., Martinez-Pomares, L., Wong, S.Y., Gordon, S.: Dectin-1 is a major beta-glucan receptor on macrophages. J. Exp. Med. 196, 407–412 (2002)PubMedCrossRefGoogle Scholar
  26. 26.
    Monsigny, M., Mayer, R., Roche, A.C.: Sugar-lectin interactions: sugar clusters, lectin multivalency and avidity. Carbohydr. Lett. 4, 35–52 (2000)PubMedGoogle Scholar
  27. 27.
    Yabe, R., Tateno, H., Hirabayashi, J.: Frontal affinity chromatography analysis of constructs of DC-SIGN, DC-SIGNR and LSECtin extend evidence for affinity to agalactosylated N-glycans. FEBS J. 277, 4010–4026 (2010)PubMedCrossRefGoogle Scholar
  28. 28.
    Lee, R.T., Hsu, T.L., Huang, S.K., Heieh, S.L., Wong, C.H., Lee, Y.C.: Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities. Glycobioloby 21, 512–520 (2011)CrossRefGoogle Scholar
  29. 29.
    Kang, Y.S., Yamazaki, S., Iyoda, T., Pack, M., Bruening, S.A., Kim, J.Y., Takahara, K., Inaba, K., Steinman, R.M., Park, C.G.: SIGN-R1, a novel C-type lectin expressed by marginal zone macrophages in spleen, mediates uptake of the polysaccharide dextran. Int. Immunol. 15, 177–86 (2003)PubMedCrossRefGoogle Scholar
  30. 30.
    Mitchell, D.A., Fadden, A.J., Drickamer, K.: A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR, Subunit organization and binding to multivalent ligands. J. Biol. Chem. 276, 28939–28945 (2001)PubMedCrossRefGoogle Scholar
  31. 31.
    Feinberg, H., Guo, Y., Mitchell, D.A., Drickamer, K., Weis, W.I.: Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J. Biol. Chem. 280, 1327–1335 (2005)PubMedCrossRefGoogle Scholar
  32. 32.
    Weis, W.I., Drickamer, K.: Trimeric structure of a C-type mannose-binding protein. Structure 2, 1227–1240 (1994)PubMedCrossRefGoogle Scholar
  33. 33.
    Solis, D., Bruix, M., Gonzalez, L., Diaz-Maurino, T., Rico, M., Jimenez-Barbero, J., Feizi, T.: Carrier protein-modulated presentation and recognition of an N-glycan: observations on the interactions of Man(8) glycoform of ribonuclease B with conglutinin. Glycobiology 11, 31–36 (2001)PubMedCrossRefGoogle Scholar
  34. 34.
    Frison, N., Taylor, M.E., Soilleus, E., Bousser, M.T., Mayer, R., Monsigny, M., Drickamer, K., Roche, A.C.: Oligolysine-based oligosaccharide clusters. Selective recognition and endocytosis by the mannose receptor and dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin. J. Biol. Chem. 278, 23922–23929 (2003)PubMedCrossRefGoogle Scholar
  35. 35.
    Chen, W.C., Completo, G.C., Sigal, D.S., Crocjer, P.R., Saven, A., Paulson, J.C.: In vivo targeting of B-cell lymphoma with glycan ligand of CD22. Blood 115, 4778–4786 (2010)PubMedCrossRefGoogle Scholar
  36. 36.
    Zang, H., Ma, Y., Sun, X.L.: Recent development in carbohydrate-decorated targeted drug/gene delivery. Med. Res. Rev. 30, 270–289 (2010)Google Scholar
  37. 37.
    Tacken, P.J., de Vries, I.J., Torensma, R., Figdor, C.G.: Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol. 7, 790–802 (2007)PubMedCrossRefGoogle Scholar
  38. 38.
    Gringhuis, S.I., den Dunnen, J., Litjens, M., van der Vlist, M., Geijtenbeek, T.B.: Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat. Immunol. 10, 1081–1088 (2009)PubMedCrossRefGoogle Scholar
  39. 39.
    den Dunnen, J., Gringhuis, S.I., Geijtenbeek, T.B.: Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immun. Immunother. 8, 1149–1157 (2009)CrossRefGoogle Scholar
  40. 40.
    Steeghs, L., van Vliet, S.J., Uronen-Hansson, H., van Mourik, A., Engering, A., Sanchez-Hernandez, M., Klein, N., Callard, R., van Putten, J.P., van der Ley, P., van Kooyk, Y., van de Winkel, J.G.: Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function. Cell Microbiol. 8, 316–325 (2006)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Applied BiochemistryTokai UniversityHiratsuka-shiJapan

Personalised recommendations