Glycoconjugate Journal

, Volume 29, Issue 4, pp 199–209 | Cite as

Bacterial species-characteristic profiles of molecular species, and the antigenicity of phospholipids and glycolipids in symbiotic Lactobacillus, Staphylococcus and Streptococcus species

  • Masao Iwamori
  • Masanori Nakasa
  • Kentaro Yamazaki
  • Yuriko Iwamori
  • Kyoko Tanaka
  • Daisuke Aoki
  • Shigeki Adachi
  • Taisei Nomura


Human symbiotic bacteria, Lactobacillus reuteri (LR) in the intestines, Staphylococcus epidermidis (SE) in skin and Streptococcus salivalis (SS) in the oral cavity, contain dihexaosyl diglycerides (DH-DG) in concentrations equivalent to those of phosphatidyl glycerol (PG) and cardiolipin (CL), together with mono- to tetrahexaosyl DGs. The molecular species, as the combination of fatty acids in the DG moiety, were revealed to be bacterial species-characteristic, but to be similar between glycolipids and phospholipids in individual bacteria, the major ones being 16:0 and cy19:0 for LR, ai15:0 and ai17:0 for SE, and 16:0 and 18:1 for SS, respectively. The carbohydrate structures of DH-DGs were also bacterial species-characteristic, being Galα1-2Glcα for LR, Glcβ1-6Glcβ for SE, and Glcα1-2Glcα for SS, respectively. Also, bacterial glycolipids were revealed to provide antigenic determinants characteristic of bacterial species on immunization of rabbits with the respective bacteria. Anti-L. johnsonii antiserum intensely reacted with tri- and tetrahexaosyl DGs, in which Galα was bound to DH-DG through an α1-6 linkage, as well as with DH-DG from LR. Although anti-SE antiserum preferentially reacted with DH-DG from SE, anti-SS antiserum reacted with DH-DG from SS and, to a lesser extent, with DH-DGs from LR and SE. But, both anti-SE and anti-SS antiserum did not react at all with monohexaosyl DG or glycosphingolipids with the same carbohydrates at the nonreducing terminals. In addition, 75 % of human sera, irrespective of the ABO blood group, were found to contain IgM to tri- and tetrahexaosyl DGs from LR, but not to DH-DGs from LR, SE and SS.


Symbiotic bacteria Glycerophospholipids Glyceroglycolipids Sphingoglycolipids Anti-bacterial antiserum TLC-immunostaining 

Abbreviations: The nomenclature for glycosphingolipids is based on the recommendations of the IUPAC-IUB Commission on Biochemical Nomenclature [1].






monohexaosyl diglycerides


dihexaosyl diglycerides


phosphatidic acid


phosphatidyl glycerol


trihexaosyl diglycerides


tetrahexaosyl diglycerides






Lactobacillus johnsonii


Lactobacillus reuteri


Staphylococcus epidermidis


Streptococcus salivalis


  1. 1.
    IUPAC-IUB: Commission on biochemical nomenclature: the nomenclature of lipids. Eur. J. Biochem. 179, 11–21 (1977)Google Scholar
  2. 2.
    Iwamori, M., Sakai, A., Minamimoto, N., Iwamori, Y., Tanaka, K., Aoki, D., Adachi, S., Nomura, T.: Characterization of novel glycolipid antigens with an α-galactose epitope in lactobacilli detected with rabbit anti-Lactobacillus antiserum and occurrence of antibodies against them in human sera. J. Biochem. 150, 515–523 (2011)PubMedCrossRefGoogle Scholar
  3. 3.
    Iwamori, M., Iwamori, Y., Adachi, S., Nomura, T.: Excretion into feces of asialo GM1 in the murine digestive tract and Lactobacillus johnsonii exhibiting binding ability toward asialo GM1. A possible role of epithelial glycolipids in the discharge of intestinal bacteria. Glycoconj. J. 28, 21–30 (2011)PubMedCrossRefGoogle Scholar
  4. 4.
    Iwamori, M., Shibagaki, T., Nakata, Y., Adachi, S., Nomura, T.: Distribution of receptor glycolipids for Lactobacilli in murine digestive tract and production of antibodies cross-reactive with them by immunization of rabbits with Lactobacilli. J. Biochem. 146, 185–191 (2009)PubMedCrossRefGoogle Scholar
  5. 5.
    Tamai, Y., Matsukawa, S., Satake, M.: Lipid composition of nerve cell perikarya. Brain Res. 26, 149–157 (1971)CrossRefGoogle Scholar
  6. 6.
    Hamberger, A., Svennerholm, L.: Composition of gangliosides and phospholipids of neuronal and glial cell enriched fractions. J. Neurochem. 18, 1821–9 (1971)PubMedCrossRefGoogle Scholar
  7. 7.
    Odutuga, A.A., Carey, E.M., Prout, R.E.: Changes in the lipid and fatty acid composition of developing rabbit brain. Biochim. Biophys. Acta 316, 115–123 (1973)PubMedGoogle Scholar
  8. 8.
    Pewzner-Jung, Y., Ben-Dor, S., Futerman, A.H.: When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. J. Biol. Chem. 281, 25001–25005 (2006)PubMedCrossRefGoogle Scholar
  9. 9.
    Yohe, H.C., Roark, D.E., Rosenberg, A.: C20-sphingosine as a determining factor in aggregation of gangliosides. J. Biol. Chem. 251, 7083–7087 (1976)PubMedGoogle Scholar
  10. 10.
    Lands, W.E.: Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. J. Biol. Chem. 231, 883–888 (1958)PubMedGoogle Scholar
  11. 11.
    Lewin, T.M., Wang, P., Coleman, R.A.: Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38, 764–771 (1999)CrossRefGoogle Scholar
  12. 12.
    Bartlett, G.R.: Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466–468 (1959)PubMedGoogle Scholar
  13. 13.
    Folch, J., Lees, M.: A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957)PubMedGoogle Scholar
  14. 14.
    Iwamori, M., Takamizawa, K., Momoeda, M., Iwamori, Y., Taketani, Y.: Gangliosides in human, cow and goat milk, and their abilities as to neutralization of cholera toxin and botulinum type A neurotoxin. Glycoconj. J. 25, 675–683 (2008)PubMedCrossRefGoogle Scholar
  15. 15.
    Harrison, R., Lunt, G.G.: Biological membranes, Blackie, Glasgow/London (1980)Google Scholar
  16. 16.
    Füllekrug, J., Simons, K.: Lipid rafts and apical membrane traffic. Ann. N. Y. Acad. Sci. 1014, 164–169 (2004)PubMedCrossRefGoogle Scholar
  17. 17.
    Hirschberg, C.B., Kennedy, E.P.: Mechanism of the enzymatic synthesis of cardiolipin in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 69, 648–651 (1972)PubMedCrossRefGoogle Scholar
  18. 18.
    Testet, E., Laroche-Traineau, J., Noubhani, A., Coulon, D., Bunoust, O., Camougrand, N., Manon, S., Lessire, R., Bessoule, J.J.: Ypr140wp, ‘the yeast tafazzin’, displays a mitochondrial lysophosphatidylcholine (lyso-PC) acyltransferase activity related to triacylglycerol and mitochondrial lipid synthesis. Biochem. J. 387, 617–626 (2005)PubMedCrossRefGoogle Scholar
  19. 19.
    Xu, Y., Condell, M., Plesken, H., Edelman-Novemsky, I., Ma, J., Ren, M., Schlame, M.: A Drosophila model of Barth syndrome. Proc. Natl. Acad. Sci. U. S. A. 103, 11584–11588 (2006)PubMedCrossRefGoogle Scholar
  20. 20.
    Shaw, N., Baddiley, J.: Structure and distribution of glycosyl diglycerides in bacteria. Nature 217, 142–144 (1968)CrossRefGoogle Scholar
  21. 21.
    Koch, H.U., Fischer, W.: Acyldiglucosyldiacylglycerol-containing lipoteichoic acid with a poly(3-O-galabiosyl-2-O-galactosyl-sn-glycero-1-phosphate) chain from Streptococcus lactis Kiel 42172. Biochemistry 17, 5275–5281 (1978)PubMedCrossRefGoogle Scholar
  22. 22.
    Smith, P.F.: Lipid composition of Mycoplasma neurolyticum. J. Bacteriol. 112, 554–558 (1972)PubMedGoogle Scholar
  23. 23.
    Sugiyama, T., Smith, P.F., Langworthy, T.A., Mayberry, W.R.: Immunological analysis of glycolipids and lipopolysaccharides derived from various mycoplasmas. Infect. Immun. 10, 1273–1279 (1974)PubMedGoogle Scholar
  24. 24.
    Shaw, N.: Bacterial glycolipids. Bacteriol. Rev. 34, 365–377 (1970)PubMedGoogle Scholar
  25. 25.
    Tanemura, M., Miyagawa, S., Koyota, S., Koma, M., Matsuda, H., Tsuji, S., Shirakura, R., Taniguchi, N.: Reduction of the major swine xenoantigen, the alpha-galactosyl epitope by transfection of the alpha2,3-sialyltransferase gene. J. Biol. Chem. 273, 16421–16425 (1998)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Masao Iwamori
    • 1
  • Masanori Nakasa
    • 1
  • Kentaro Yamazaki
    • 1
  • Yuriko Iwamori
    • 1
  • Kyoko Tanaka
    • 2
  • Daisuke Aoki
    • 2
  • Shigeki Adachi
    • 3
  • Taisei Nomura
    • 3
  1. 1.Department of Biochemistry, Faculty of Science and TechnologyKinki UniversityHigashiosakaJapan
  2. 2.Department of Obstetrics and Gynecology, School of MedicineKeio UniversityTokyoJapan
  3. 3.Animal Models of Human DiseasesNational Institute of Biomedical InnovationIbarakiJapan

Personalised recommendations