Glycoconjugate Journal

, Volume 30, Issue 1, pp 33–40 | Cite as

“Casting” light on the role of glycosylation during embryonic development: Insights from zebrafish



Zebrafish (Danio rerio) remains a versatile model organism for the investigation of early development and organogenesis, and has emerged as a valuable platform for drug discovery and toxicity evaluation [1, 2, 3, 4, 5, 6]. Harnessing the genetic power and experimental accessibility of this system, three decades of research have identified key genes and pathways that control the development of multiple organ systems and tissues, including the heart, kidney, and craniofacial cartilage, as well as the hematopoietic, vascular, and central and peripheral nervous systems [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. In addition to their application in large mutagenic screens, zebrafish has been used to model a variety of diseases such as diabetes, polycystic kidney disease, muscular dystrophy and cancer [32, 33, 34, 35, 36]. As this work continues to intersect with cellular pathways and processes such as lipid metabolism, glycosylation and vesicle trafficking, investigators are often faced with the challenge of determining the degree to which these pathways are functionally conserved in zebrafish. While they share a high degree of genetic homology with mouse and human, the manner in which cellular pathways are regulated in zebrafish during early development, and the differences in the organ physiology, warrant consideration before functional studies can be effectively interpreted and compared with other vertebrate systems. This point is particularly relevant for glycosylation since an understanding of the glycan diversity and the mechanisms that control glycan biosynthesis during zebrafish embryogenesis (as in many organisms) is still developing.

Nonetheless, a growing number of studies in zebrafish have begun to cast light on the functional roles of specific classes of glycans during organ and tissue development. While many of the initial efforts involved characterizing identified mutants in a number of glycosylation pathways, the use of reverse genetic approaches to directly model glycosylation-related disorders is now increasingly popular. In this review, the glycomics of zebrafish and the developmental expression of their glycans will be briefly summarized along with recent chemical biology approaches to visualize certain classes of glycans within developing embryos. Work regarding the role of protein-bound glycans and glycosaminoglycans (GAG) in zebrafish development and organogenesis will also be highlighted. Lastly, future opportunities and challenges in the expanding field of zebrafish glycobiology are discussed.


Zebrafish Glycosylation Development Sialylation Glycosaminoglycans N-glycans Mucins Cartilage 


  1. 1.
    Mullins, M.C., Hammerschmidt, M., Haffter, P., Nusslein-Volhard, C.: Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4(3), 189–202 (1994)PubMedCrossRefGoogle Scholar
  2. 2.
    Haffter, P., et al.: The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996)PubMedGoogle Scholar
  3. 3.
    Granato, M., Nusslein-Volhard, C.: Fishing for genes controlling development. Curr. Opin. Genet. Dev. 6(4), 461–468 (1996)PubMedCrossRefGoogle Scholar
  4. 4.
    Peterson, R.T., Macrae, C.A.: Systematic approaches to toxicology in the zebrafish. Annu. Rev. Pharmacol. Toxicol. 52, 433–453 (2012)PubMedCrossRefGoogle Scholar
  5. 5.
    Zon, L.I., Peterson, R.T.: In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4(1), 35–44 (2005)PubMedCrossRefGoogle Scholar
  6. 6.
    MacRae, C.A., Peterson, R.T.: Zebrafish-based small molecule discovery. Chem. Biol. 10(10), 901–908 (2003)PubMedCrossRefGoogle Scholar
  7. 7.
    Baier, H., et al.: Genetic dissection of the retinotectal projection. Development 123, 415–425 (1996)PubMedGoogle Scholar
  8. 8.
    Brand, M., et al.: Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123, 179–190 (1996)PubMedGoogle Scholar
  9. 9.
    Brand, M., et al.: Mutations affecting development of the midline and general body shape during zebrafish embryogenesis. Development 123, 129–142 (1996)PubMedGoogle Scholar
  10. 10.
    Chen, J.N., et al.: Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123, 293–302 (1996)PubMedGoogle Scholar
  11. 11.
    Furutani-Seiki, M., et al.: Neural degeneration mutants in the zebrafish, Danio rerio. Development 123, 229–239 (1996)PubMedGoogle Scholar
  12. 12.
    Granato, M., et al.: Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399–413 (1996)PubMedGoogle Scholar
  13. 13.
    Hammerschmidt, M., et al.: Mutations affecting morphogenesis during gastrulation and tail formation in the zebrafish, Danio rerio. Development 123, 143–151 (1996)PubMedGoogle Scholar
  14. 14.
    Heisenberg, C.P., et al.: Genes involved in forebrain development in the zebrafish, Danio rerio. Development 123, 191–203 (1996)PubMedGoogle Scholar
  15. 15.
    Jiang, Y.J., et al.: Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio. Development 123, 205–216 (1996)PubMedGoogle Scholar
  16. 16.
    Kane, D.A., et al.: The zebrafish epiboly mutants. Development 123, 47–55 (1996)PubMedGoogle Scholar
  17. 17.
    Kane, D.A., et al.: The zebrafish early arrest mutants. Development 123, 57–66 (1996)PubMedGoogle Scholar
  18. 18.
    Karlstrom, R.O., et al.: Zebrafish mutations affecting retinotectal axon pathfinding. Development 123, 427–438 (1996)PubMedGoogle Scholar
  19. 19.
    Kelsh, R.N., et al.: Zebrafish pigmentation mutations and the processes of neural crest development. Development 123, 369–389 (1996)PubMedGoogle Scholar
  20. 20.
    Mullins, M.C., et al.: Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123, 81–93 (1996)PubMedGoogle Scholar
  21. 21.
    Odenthal, J., et al.: Mutations affecting the formation of the notochord in the zebrafish, Danio rerio. Development 123, 103–115 (1996)PubMedGoogle Scholar
  22. 22.
    Piotrowski, T., et al.: Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development 123, 345–356 (1996)PubMedGoogle Scholar
  23. 23.
    Ransom, D.G., et al.: Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311–319 (1996)PubMedGoogle Scholar
  24. 24.
    Schilling, T.F., et al.: Jaw and branchial arch mutants in zebrafish I: branchial arches. Development 123, 329–344 (1996)PubMedGoogle Scholar
  25. 25.
    Trowe, T., et al.: Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 123, 439–450 (1996)PubMedGoogle Scholar
  26. 26.
    van Eeden, F.J., et al.: Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development 123, 153–164 (1996)PubMedGoogle Scholar
  27. 27.
    van Eeden, F.J., et al.: Genetic analysis of fin formation in the zebrafish, Danio rerio. Development 123, 255–262 (1996)PubMedGoogle Scholar
  28. 28.
    Whitfield, T.T., et al.: Mutations affecting development of the zebrafish inner ear and lateral line. Development 123, 241–254 (1996)PubMedGoogle Scholar
  29. 29.
    Amsterdam, A., et al.: A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13(20), 2713–2724 (1999)PubMedCrossRefGoogle Scholar
  30. 30.
    Stainier, D.Y., et al.: Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292 (1996)PubMedGoogle Scholar
  31. 31.
    Pack, M., et al.: Mutations affecting development of zebrafish digestive organs. Development 123, 321–328 (1996)PubMedGoogle Scholar
  32. 32.
    Feitsma, H., Cuppen, E.: Zebrafish as a cancer model. Mol Cancer Res 6(5), 685–694 (2008)PubMedCrossRefGoogle Scholar
  33. 33.
    Feitsma, H., Kuiper, R.V., Korving, J., Nijman, I.J., Cuppen, E.: Zebrafish with mutations in mismatch repair genes develop neurofibromas and other tumors. Cancer Res. 68(13), 5059–5066 (2008)PubMedCrossRefGoogle Scholar
  34. 34.
    Drummond, I.A.: Kidney development and disease in the zebrafish. J. Am. Soc. Nephrol. 16(2), 299–304 (2005)PubMedCrossRefGoogle Scholar
  35. 35.
    Rubinstein, A.L.: Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel 6(2), 218–223 (2003)PubMedGoogle Scholar
  36. 36.
    Lieschke, G.J., Currie, P.D.: Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8(5), 353–367 (2007)PubMedCrossRefGoogle Scholar
  37. 37.
    Guerardel, Y., Chang, L.Y., Maes, E., Huang, C.J., Khoo, K.H.: Glycomic survey mapping of zebrafish identifies unique sialylation pattern. Glycobiology 16(3), 244–257 (2006)PubMedCrossRefGoogle Scholar
  38. 38.
    Chang, L.Y., et al.: Developmental regulation of oligosialylation in zebrafish. Glycoconj. J. 26(3), 247–261 (2009)PubMedCrossRefGoogle Scholar
  39. 39.
    Chang, L.Y., et al.: Molecular cloning and characterization of the expression pattern of the zebrafish alpha2, 8-sialyltransferases (ST8Sia) in the developing nervous system. Glycoconj. J. 26(3), 263–275 (2009)PubMedCrossRefGoogle Scholar
  40. 40.
    Harduin-Lepers, A., et al.: Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes. BMC Evol. Biol. 8, 258 (2008)PubMedCrossRefGoogle Scholar
  41. 41.
    Bentrop, J., Marx, M., Schattschneider, S., Rivera-Milla, E., Bastmeyer, M.: Molecular evolution and expression of zebrafish St8SiaIII, an alpha-2,8-sialyltransferase involved in myotome development. Dev. Dyn. 237(3), 808–818 (2008)PubMedCrossRefGoogle Scholar
  42. 42.
    Marx, M., Rivera-Milla, E., Stummeyer, K., Gerardy-Schahn, R., Bastmeyer, M.: Divergent evolution of the vertebrate polysialyltransferase Stx and Pst genes revealed by fish-to-mammal comparison. Dev. Biol. 306(2), 560–571 (2007)PubMedCrossRefGoogle Scholar
  43. 43.
    Vanbeselaere, J., et al.: Mapping the expressed glycome and glycosyltransferases of zebrafish liver cells as a relevant model system for glycosylation studies. J Proteome Res 11(4), 2164–2177 (2012)PubMedCrossRefGoogle Scholar
  44. 44.
    Langhauser, M., et al.: Ncam1a and Ncam1b: two carriers of polysialic acid with different functions in the developing zebrafish nervous system. Glycobiology 22(2), 196–209 (2012)PubMedCrossRefGoogle Scholar
  45. 45.
    Schaper, W., et al.: Identification and Biochemical Characterization of Two Functional CMP-Sialic Acid Synthetases in Danio rerio. J. Biol. Chem. 287(16), 13239–13248 (2012)PubMedCrossRefGoogle Scholar
  46. 46.
    Takemoto, T., Natsuka, S., Nakakita, S., Hase, S.: Expression of complex-type N-glycans in developmental periods of zebrafish embryo. Glycoconj. J. 22(1–2), 21–26 (2005)PubMedCrossRefGoogle Scholar
  47. 47.
    Kageyama, N., Natsuka, S., Hase, S.: Molecular cloning and characterization of two zebrafish alpha(1,3)fucosyltransferase genes developmentally regulated in embryogenesis. J. Biochem. 125(4), 838–845 (1999)PubMedCrossRefGoogle Scholar
  48. 48.
    Moriguchi, K., et al.: Free oligosaccharides with Lewis x structure expressed in the segmentation period of zebrafish embryo. J. Biochem. 142(2), 213–227 (2007)PubMedCrossRefGoogle Scholar
  49. 49.
    Souza, A.R., et al.: Chondroitin sulfate and keratan sulfate are the major glycosaminoglycans present in the adult zebrafish Danio rerio (Chordata-Cyprinidae). Glycoconj. J. 24(9), 521–530 (2007)PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang, F., et al.: Structural characterization of glycosaminoglycans from zebrafish in different ages. Glycoconj. J. 26(2), 211–218 (2009)PubMedCrossRefGoogle Scholar
  51. 51.
    Semino, C.E., Specht, C.A., Raimondi, A., Robbins, P.W.: Homologs of the Xenopus developmental gene DG42 are present in zebrafish and mouse and are involved in the synthesis of Nod-like chitin oligosaccharides during early embryogenesis. Proc. Natl. Acad. Sci. U. S. A. 93(10), 4548–4553 (1996)PubMedCrossRefGoogle Scholar
  52. 52.
    Bakkers, J., et al.: An important developmental role for oligosaccharides during early embryogenesis of cyprinid fish. Proc. Natl. Acad. Sci. U. S. A. 94(15), 7982–7986 (1997)PubMedCrossRefGoogle Scholar
  53. 53.
    Semino, C.E., Allende, M.L.: Chitin oligosaccharides as candidate patterning agents in zebrafish embryogenesis. Int. J. Dev. Biol. 44(2), 183–193 (2000)PubMedGoogle Scholar
  54. 54.
    Snaar-Jagalska, B.E., Krens, S.F., Robina, I., Wang, L.X., Spaink, H.P.: Specific activation of ERK pathways by chitin oligosaccharides in embryonic zebrafish cell lines. Glycobiology 13(10), 725–732 (2003)PubMedCrossRefGoogle Scholar
  55. 55.
    van Asselt, E., de Graaf, F., Smit-Onel, M.J., van Raamsdonk, W.: Spinal neurons in the zebrafish labeled with fluoro-gold and wheat-germ agglutinin. Neuroscience 43(2–3), 611–622 (1991)PubMedCrossRefGoogle Scholar
  56. 56.
    Becker, K.A., Hart, N.H.: Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis. J Cell Sci 112(Pt 1), 97–110 (1999)PubMedGoogle Scholar
  57. 57.
    Lugo-Villarino, G., et al.: Identification of dendritic antigen-presenting cells in the zebrafish. Proc. Natl. Acad. Sci. U. S. A. 107(36), 15850–15855 (2010)PubMedCrossRefGoogle Scholar
  58. 58.
    Laughlin, S.T., Baskin, J.M., Amacher, S.L., Bertozzi, C.R.: In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320(5876), 664–667 (2008)PubMedCrossRefGoogle Scholar
  59. 59.
    Baskin, J.M., Dehnert, K.W., Laughlin, S.T., Amacher, S.L., Bertozzi, C.R.: Visualizing enveloping layer glycans during zebrafish early embryogenesis. Proc. Natl. Acad. Sci. U. S. A. 107(23), 10360–10365 (2010)PubMedCrossRefGoogle Scholar
  60. 60.
    Dehnert, K.W., et al.: Imaging the Sialome during Zebrafish Development with Copper-Free Click Chemistry. ChemBioChem 13(3), 353–357 (2012)PubMedCrossRefGoogle Scholar
  61. 61.
    Dehnert, K.W., et al.: Metabolic labeling of fucosylated glycans in developing zebrafish. ACS Chem. Biol. 6(6), 547–552 (2011)PubMedCrossRefGoogle Scholar
  62. 62.
    Zheng, T., et al.: Tracking N-acetyllactosamine on cell-surface glycans in vivo. Angew Chem Int Ed Engl 50(18), 4113–4118 (2011)PubMedCrossRefGoogle Scholar
  63. 63.
    Jiang, H., et al.: Imaging glycans in zebrafish embryos by metabolic labeling and bioorthogonal click chemistry. J Vis Exp 52, 2686 (2011). doi: 10.3791/2686 PubMedGoogle Scholar
  64. 64.
    Soriano Del Amo, D., et al.: Biocompatible copper(I) catalysts for in vivo imaging of glycans. J. Am. Chem. Soc. 132(47), 16893–16899 (2010)PubMedCrossRefGoogle Scholar
  65. 65.
    Panzer, J.A., et al.: Neuromuscular synaptogenesis in wild-type and mutant zebrafish. Dev. Biol. 285(2), 340–357 (2005)PubMedCrossRefGoogle Scholar
  66. 66.
    Song, Y., et al.: Neural and synaptic defects in slytherin, a zebrafish model for human congenital disorders of glycosylation. PLoS One 5(10), e13743 (2010)PubMedCrossRefGoogle Scholar
  67. 67.
    Stanley, P., Okajima, T.: Roles of glycosylation in Notch signaling. Curr. Top. Dev. Biol. 92, 131–164 (2010)PubMedCrossRefGoogle Scholar
  68. 68.
    Jafar-Nejad, H., Leonardi, J., Fernandez-Valdivia, R.: Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology 20(8), 931–949 (2010)PubMedCrossRefGoogle Scholar
  69. 69.
    Haines, N., Irvine, K.D.: Glycosylation regulates Notch signalling. Nat. Rev. Mol. Cell Biol. 4(10), 786–797 (2003)PubMedCrossRefGoogle Scholar
  70. 70.
    Haltiwanger, R.S.: Regulation of signal transduction pathways in development by glycosylation. Curr. Opin. Struct. Biol. 12(5), 593–598 (2002)PubMedCrossRefGoogle Scholar
  71. 71.
    Ohata, S., et al.: Neuroepithelial cells require fucosylated glycans to guide the migration of vagus motor neuron progenitors in the developing zebrafish hindbrain. Development 136(10), 1653–1663 (2009)PubMedCrossRefGoogle Scholar
  72. 72.
    Seth, A., Machingo, Q.J., Fritz, A., Shur, B.D.: Core fucosylation is required for midline patterning during zebrafish development. Dev. Dyn. 239(12), 3380–3390 (2010)PubMedCrossRefGoogle Scholar
  73. 73.
    Machingo, Q.J., Fritz, A., Shur, B.D.: A beta1,4-galactosyltransferase is required for convergent extension movements in zebrafish. Dev. Biol. 297(2), 471–482 (2006)PubMedCrossRefGoogle Scholar
  74. 74.
    Machingo, Q.J., Fritz, A., Shur, B.D.: A beta1,4-galactosyltransferase is required for Bmp2-dependent patterning of the dorsoventral axis during zebrafish embryogenesis. Development 133(11), 2233–2241 (2006)PubMedCrossRefGoogle Scholar
  75. 75.
    Craig, S.E., et al.: The zebrafish galectin Drgal1-l2 is expressed by proliferating Muller glia and photoreceptor progenitors and regulates the regeneration of rod photoreceptors. Invest Ophthalmol Vis Sci 51(6), 3244–3252 (2010)PubMedCrossRefGoogle Scholar
  76. 76.
    Ahmed, H., Du, S.J., Vasta, G.R.: Knockdown of a galectin-1-like protein in zebrafish (Danio rerio) causes defects in skeletal muscle development. Glycoconj. J. 26(3), 277–283 (2009)PubMedCrossRefGoogle Scholar
  77. 77.
    Ahmed, H., Vasta, G.R.: Unlike mammalian GRIFIN, the zebrafish homologue (DrGRIFIN) represents a functional carbohydrate-binding galectin. Biochem. Biophys. Res. Commun. 371(3), 350–355 (2008)PubMedCrossRefGoogle Scholar
  78. 78.
    Vasta, G.R., Ahmed, H., Du, S., Henrikson, D.: Galectins in teleost fish: Zebrafish (Danio rerio) as a model species to address their biological roles in development and innate immunity. Glycoconj. J. 21(8–9), 503–521 (2004)PubMedCrossRefGoogle Scholar
  79. 79.
    Ahmed, H., Du, S.J., O’Leary, N., Vasta, G.R.: Biochemical and molecular characterization of galectins from zebrafish (Danio rerio): notochord-specific expression of a prototype galectin during early embryogenesis. Glycobiology 14(3), 219–232 (2004)PubMedCrossRefGoogle Scholar
  80. 80.
    Marx, M., Rutishauser, U., Bastmeyer, M.: Dual function of polysialic acid during zebrafish central nervous system development. Development 128(24), 4949–4958 (2001)PubMedGoogle Scholar
  81. 81.
    Webster, D.M., et al.: O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development. BMC Dev. Biol. 9, 28 (2009)PubMedCrossRefGoogle Scholar
  82. 82.
    Willer, G.B., Lee, V.M., Gregg, R.G., Link, B.A.: Analysis of the Zebrafish perplexed mutation reveals tissue-specific roles for de novo pyrimidine synthesis during development. Genetics 170(4), 1827–1837 (2005)PubMedCrossRefGoogle Scholar
  83. 83.
    Peal, D.S., Burns, C.G., Macrae, C.A., Milan, D.: Chondroitin sulfate expression is required for cardiac atrioventricular canal formation. Dev. Dyn. 238(12), 3103–3110 (2009)PubMedCrossRefGoogle Scholar
  84. 84.
    Becker, C.G., Becker, T.: Repellent guidance of regenerating optic axons by chondroitin sulfate glycosaminoglycans in zebrafish. J. Neurosci. 22(3), 842–853 (2002)PubMedGoogle Scholar
  85. 85.
    Bernhardt, R.R., Schachner, M.: Chondroitin sulfates affect the formation of the segmental motor nerves in zebrafish embryos. Dev. Biol. 221(1), 206–219 (2000)PubMedCrossRefGoogle Scholar
  86. 86.
    Zoeller, J.J., et al.: A central role for decorin during vertebrate convergent extension. J. Biol. Chem. 284(17), 11728–11737 (2009)PubMedCrossRefGoogle Scholar
  87. 87.
    De Cat, B., et al.: Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J Cell Biol 163(3), 625–635 (2003)PubMedCrossRefGoogle Scholar
  88. 88.
    Arrington, C.B., Yost, H.J.: Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo. Development 136(18), 3143–3152 (2009)PubMedCrossRefGoogle Scholar
  89. 89.
    Kramer, K.L., Yost, H.J.: Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev Cell 2(1), 115–124 (2002)PubMedCrossRefGoogle Scholar
  90. 90.
    Eames, B.F., et al.: UDP xylose synthase 1 is required for morphogenesis and histogenesis of the craniofacial skeleton. Dev. Biol. 341(2), 400–415 (2010)PubMedCrossRefGoogle Scholar
  91. 91.
    Walsh, E.C., Stainier, D.Y.: UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293(5535), 1670–1673 (2001)PubMedCrossRefGoogle Scholar
  92. 92.
    Eames, B.F., et al.: Mutations in fam20b and xylt1 reveal that cartilage matrix controls timing of endochondral ossification by inhibiting chondrocyte maturation. PLoS Genet 7(8), e1002246 (2011)PubMedCrossRefGoogle Scholar
  93. 93.
    Lee, J.S., et al.: Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 44(6), 947–960 (2004)PubMedCrossRefGoogle Scholar
  94. 94.
    Clement, A., et al.: Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher. PLoS Genet 4(7), e1000136 (2008)PubMedCrossRefGoogle Scholar
  95. 95.
    Mizumoto, S., et al.: Chondroitin 4-O-sulfotransferase-1 is required for somitic muscle development and motor axon guidance in zebrafish. Biochem. J. 419(2), 387–399 (2009)PubMedCrossRefGoogle Scholar
  96. 96.
    Busch-Nentwich, E., Sollner, C., Roehl, H., Nicolson, T.: The deafness gene dfna5 is crucial for ugdh expression and HA production in the developing ear in zebrafish. Development 131(4), 943–951 (2004)PubMedCrossRefGoogle Scholar
  97. 97.
    Norton, W.H., Ledin, J., Grandel, H., Neumann, C.J.: HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development. Development 132(22), 4963–4973 (2005)PubMedCrossRefGoogle Scholar
  98. 98.
    Cadwalader, E. L., Condic, M. L., Yost, H. J.: 2-O-sulfotransferase regulates Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly. Development (2012)Google Scholar
  99. 99.
    Grewal, P.K., McLaughlan, J.M., Moore, C.J., Browning, C.A., Hewitt, J.E.: Characterization of the LARGE family of putative glycosyltransferases associated with dystroglycanopathies. Glycobiology 15(10), 912–923 (2005)PubMedCrossRefGoogle Scholar
  100. 100.
    Moore, C.J., Goh, H.T., Hewitt, J.E.: Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Genomics 92(3), 159–167 (2008)PubMedCrossRefGoogle Scholar
  101. 101.
    Thornhill, P., Bassett, D., Lochmuller, H., Bushby, K., Straub, V.: Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP). Brain 131(Pt 6), 1551–1561 (2008)PubMedCrossRefGoogle Scholar
  102. 102.
    Wood, A.J., et al.: Abnormal vascular development in zebrafish models for fukutin and FKRP deficiency. Hum. Mol. Genet. 20(24), 4879–4890 (2011)PubMedCrossRefGoogle Scholar
  103. 103.
    Lin, Y.Y., et al.: Zebrafish Fukutin family proteins link the unfolded protein response with dystroglycanopathies. Hum. Mol. Genet. 20(9), 1763–1775 (2011)PubMedCrossRefGoogle Scholar
  104. 104.
    Avsar-Ban, E., et al.: Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20(9), 1089–1102 (2010)PubMedCrossRefGoogle Scholar
  105. 105.
    Fan, X., Klein, M., Flanagan-Steet, H.R., Steet, R.: Selective yolk deposition and mannose phosphorylation of lysosomal glycosidases in zebrafish. J. Biol. Chem. 285(43), 32946–32953 (2010)PubMedCrossRefGoogle Scholar
  106. 106.
    Flanagan-Steet, H., Sias, C., Steet, R.: Altered chondrocyte differentiation and extracellular matrix homeostasis in a zebrafish model for mucolipidosis II. Am. J. Pathol. 175(5), 2063–2075 (2009)PubMedCrossRefGoogle Scholar
  107. 107.
    Moro, E., et al.: A novel functional role of iduronate-2-sulfatase in zebrafish early development. Matrix Biol 29(1), 43–50 (2010)PubMedCrossRefGoogle Scholar
  108. 108.
    Petrey, A.C., et al.: Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II. Dis Model Mech 5(2), 177–190 (2012)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Complex Carbohydrate Research CenterUniversity of GeorgiaAthensUSA

Personalised recommendations