Glycoconjugate Journal

, Volume 29, Issue 1, pp 25–33 | Cite as

Glycoconjugates prevent B. anthracis toxin-induced cell death through binding while activating macrophages

  • Olga Tarasenko
  • Ashley Scott
  • Lee Soderberg
  • Pierre Alusta


Bacillus anthracis toxins may be attenuated if macrophages could neutralize toxins upon contact or exposure. Glycoconjugate-bearing polymers, which have been shown to bind to Bacillus spores, were tested for recognition and binding of protective antigen (PA), lethal factor (LF), and edema factor (EF) toxins. We have demonstrated modulation of macrophage activity following exposure to these toxins. Without glycoconjugate (GC) activation, murine macrophages were killed by Bacillus toxins. GCs were shown to have a protective influence, sparing macrophages from toxin-induced cell death, as shown by increased macrophage cell viability based on trypan blue assay. Increased levels of inducible nitric oxide (NO) production by macrophages in presence of GCs suggest that GCs provide an activation signal for macrophages and stimulate their function. Results hint to GCs that promote neutralization of Bacillus toxins, block toxin-induced macrophage death, while increasing macrophage activation. Polymeric GCs may suggest novel approaches to improve existing or develop new vaccines as well as immunotherapeutics.


B. anthracis Protective antigen (PA) Lethal factor (LF) Edema factor (EF) toxin Glycoconjugate Recognition Macrophage Phagocytosis Neutralization 



Glycoconjugate-polyacrylamide-fluorescein polymer




Galα1-3 GalNAcα -PAA-flu


Galβ1-3 GalNAcβ-PAA-flu


GalNAcα1-3 GalNAcβ -PAA-flu


Galβ1-3 Galβ -PAA-flu


GlcNAcβ1-4 GlcNAcβ -PAA-flu


Fucα1-4 GlcNAcβ -PAA-flu


Galβ1-2 Galβ -PAA-flu


Fucα1-3 GlcNAcβ -PAA-flu


GlcNAcβ1-3 GlcNAcα -PAA-flu


GalNAcβ1-6 GalNAcα -PAA-flu














Lactate dehydrogenase


Nitric oxide


Colony forming units




Protective antigen


Lethal factor


Edema factor


Anthrax toxin receptor



The present study was supported in part by start-up funds and the Kathleen Thomsen Hall Charitable Trust Grant awarded to Tarasenko. This study conforms to the IBC protocol # 09049, the UALR IACUC protocol # R-09-01 and the UAMS IACUC protocol # 2985. The authors extend their appreciation to editors and reviewers, whose comments and suggestions were most helpful in making this manuscript a more solid one for publication in the Glycoconjugate Journal.


  1. 1.
    Weiss, M.M., Weiss, P.D., Weiss, J.B.: Anthrax vaccine and public health policy. Am. J. Public Health 97(11), 1945–1951 (2007)PubMedCrossRefGoogle Scholar
  2. 2.
    Barnaby, W.: In: Barnaby, W. (ed.) The Plague Markers: The secret World of Biological Warfare. Vision Paperbacks, London (1997)Google Scholar
  3. 3.
    Jamie, W.E.: Anthrax: diagnosis, treatment, prevention. Prim. Care Update OB/GYNS 9, 117–121 (2002)CrossRefGoogle Scholar
  4. 4.
    Spencer, R.C.: Bacillus anthracis. J. Clin. Pathol. 56, 182–177 (2003)PubMedCrossRefGoogle Scholar
  5. 5.
    Friedlander, A.M.: Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261, 7123–7126 (1986)PubMedGoogle Scholar
  6. 6.
    Popov, S.G., Villasmil, R., Bernardi, J., Grene, E., Cardwell, J., Popova, T., Wu, A., Alibek, A., Bailey, C., Alibek, K.: Effect of Bacillus anthracis lethal toxin on human peripheral blood mononuclear cells. FEBS Lett. 527, 211–215 (2002)PubMedCrossRefGoogle Scholar
  7. 7.
    Singh, Y., Leppla, S.H., Bhatnagar, R., Friedlander, A.M.: Internalization and processing of Bacillus anthracis lethal toxin by toxin-sensitive and -resistant cells. J. Biol. Chem. 264, 11099–11102 (1989)PubMedGoogle Scholar
  8. 8.
    Cote, C.K., Rossi, C.A., Kang, A.S., Morrow, P.R., Lee, J.S., Welkos, S.L.: The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb. Pathog. 38, 209–225 (2005)PubMedCrossRefGoogle Scholar
  9. 9.
    Bradley, K.A., Young, J.A.: Anthrax toxin receptor proteins. Biochem. Pharmacol. 65, 309–314 (2003)PubMedCrossRefGoogle Scholar
  10. 10.
    Bonuccelli, G., Sotgia, F., Frank, P.G., Williams, T.M., de Almeida, C.J., Tanowitz, H.B., Sherer, P.E., Hotchkiss, K.A., Terman, B.I., Rollman, B., Alileche, A., Brojatsch, J., Lisanti, M.P.: Anthrax toxin receptor (ATR/TEM8) is highly expressed in epithelial cells lining the toxin’s three sites of entry (lungs, skin, and intestine). Am. J. Physiol. Cell Physiol. 288, C1402–C1410 (2005)PubMedCrossRefGoogle Scholar
  11. 11.
    Duesbery, N.S., Vande Woude, G.F.: Anthrax toxins. Cell. Mol. Life. Sci. 55, 1599–1609 (1999)PubMedCrossRefGoogle Scholar
  12. 12.
    Guidi-Rontani, C., Mock, M.: Macrophage interactions. Curr. Top. Microbiol. Immunol. 271, 115–141 (2002)PubMedGoogle Scholar
  13. 13.
    Ramirez, D.M., Leppla, S.H., Schneerson, R., Shiloach, J.: Production, recovery and immunogenicity of the protective antigen from a recombinant strain of Bacillus anthracis. J. Ind. Microbiol. Biotechnol. 28, 232–238 (2002)PubMedCrossRefGoogle Scholar
  14. 14.
    Little, S.F., Webster, W.M., Ivins, B.E., Fellows, P.F., Norris, S.L., Andrews, G.P.: Development of an in vitro-based potency assay for anthrax vaccine. Vaccine 22, 2843–2852 (2004)PubMedCrossRefGoogle Scholar
  15. 15.
    Baillie, L., Read, T.D.: Bacillus anthracis, a bug with attitude! Curr. Opin. Microbiol. 4, 78–81 (2001)PubMedCrossRefGoogle Scholar
  16. 16.
    De Bolle, X., Bayliss, C.D., Field, D., van de Ven, T., Saunders, N.J., Hood, D.W., Moxon, E.R.: The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol. Microbiol. 35, 211–222 (2000)PubMedCrossRefGoogle Scholar
  17. 17.
    Gabius, H.J., Gabius, S.: Glycosciences: Status and Perspectives. Chapman & Hall, London (1997)Google Scholar
  18. 18.
    Crocker, P.R., Feizi, T.: Carbohydrate recognition systems: functional trials in cell- cell interaction. Curr. Opin. Struct. Biol. 6, 679–691 (1996)PubMedCrossRefGoogle Scholar
  19. 19.
    Feizi, T.: Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000)PubMedCrossRefGoogle Scholar
  20. 20.
    Karlsson, K.A., Angstrom, J., Bergstrom, J., Lanne, B.: Microbial interaction with animal cell surface carbohydrates. APMIS Suppl. 27, 71–83 (1992)PubMedGoogle Scholar
  21. 21.
    Axford, J.: The impact of glycobiology on medicine. Trends Immunol. 22, 237–239 (2001)PubMedCrossRefGoogle Scholar
  22. 22.
    Borman, S.: Carbohydrate vaccines. Chem. Eng. News. 9, 31–35 (2004)Google Scholar
  23. 23.
    Tarasenko, O., Islam, Sh, Paquiot, D., Levon, K.: Glycoconjugates for recognition of Bacillus spores. Carb. Res. 339, 2859–2870 (2004)CrossRefGoogle Scholar
  24. 24.
    Tarasenko, O., Burton, E., Soderberg, L., Alusta, P.: Polymeric glycoconjugates protect and activate macrophages to promote killing of Bacillus cereus spores during phagocytosis. Glycoconj. J. 25, 473–480 (2008)PubMedCrossRefGoogle Scholar
  25. 25.
    Tarasenko, O., Scott, A., Soderberg, S., Ponnappan, U., Alusta, P.: Killing of Bacillus spores is mediated by nitric oxide and nitric oxide synthase during glycoconjugate—enhanced phagocytosis. Glycoconj. J. 27(1), 13–25 (2010)PubMedCrossRefGoogle Scholar
  26. 26.
    Tarasenko, O., Soderberg, L., Hester, K., Park Kim, M., McManus, D., Alusta, P.: Glycoconjugates enhanced the intracellular killing of Bacillus spores, increasing macrophage viability and activation. Arch. Microbiol. 189, 579–587 (2008)PubMedCrossRefGoogle Scholar
  27. 27.
    Castleberry, J., Alusta, P., Soderberg, L., Tarasenko, O.: Binding and neutralization of Bacillus anthracis protective antigen toxin and its complexes using glycoconjugates. PMSE 98, 841–842 (2008)Google Scholar
  28. 28.
    Tarasenko O., Alusta P.: Docking approach to study receptor-ligand interactions. In: MidSouth Computational Biology and Bioinformatics Society Fourth Annual Conference. New Orleans, Louisiana, February 1st–3 rd, (abstract/poster) (2007)Google Scholar
  29. 29.
    Levon K., Tarasenko O., Bin Yu.: Glycoconjugate sensors. U.S. Patent Application Serial No.: 20040161861 (2004)Google Scholar
  30. 30.
    Keller, R., Geiges, M., Keist, R.: L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res. 50, 1421–1425 (1990)PubMedGoogle Scholar
  31. 31.
    Beauvais, F., Michel, L., Dubertret, L.: The nitric oxide donors, azide and hydroxylamine, inhibit the programmed cell death of cytokine-deprived human eosinophils. FEBS Lett. 361, 229–232 (1995)PubMedCrossRefGoogle Scholar
  32. 32.
    Choi, B.M., Pae, H.O., Jang II, S., Kim, Y.M., Chung, H.T.: Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J. Biochem. Mol. Biol. 35, 116–126 (2002)PubMedCrossRefGoogle Scholar
  33. 33.
    Dimmelder, S., Haendeler, J., Nehls, M., Zeiher, A.M.: Suppression of apoptosis by nitric oxide via inhibition of interleukin-1β-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J. Exp. Med. 185, 601–607 (1997)CrossRefGoogle Scholar
  34. 34.
    Kwon, Y.G., Min, J.K., Kim, K.M., Lee, D.J., Billiar, T.R., Kim, Y.M.: Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J. Biol. Chem. 276, 10627–10633 (2001)PubMedCrossRefGoogle Scholar
  35. 35.
    Vespa, G.N.R., Cunha, F.Q., Silva, J.S.: Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect. Immun. 62, 5177–5182 (1994)PubMedGoogle Scholar
  36. 36.
    Black, J.G.: In: Microbiology: Black J.G. (ed.) Principles and Explorations, pp. 463–484. John Wiley & Sons, Inc. Publishing 2005Google Scholar
  37. 37.
    Crocker, P.R., Feizi, T.: Carbohydrate recognition systems: functional trials in cell- cell interaction. Curr. Opin. Struct. Biol. 6, 679–691 (1996)PubMedCrossRefGoogle Scholar
  38. 38.
    Feizi, T.: Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000)PubMedCrossRefGoogle Scholar
  39. 39.
    Bertozzi, C.R., Kiessling, L.L.: Chemical glycobiology. Science 291, 2357–2364 (2001)PubMedCrossRefGoogle Scholar
  40. 40.
    Feizi, T.: Progress in deciphering the information content of the ‘glycome’ - a crescendo in the closing years of the millennium. Glycoconj. J. 17, 553–565 (2000)PubMedCrossRefGoogle Scholar
  41. 41.
    Kiessling, L.L., Gestwicki, J.E., Strong, L.E.: Synthetic multivalent ligands in the exploration of cell surface interactions. Curr. Opin. Chem. Biol. 6, 696–703 (2000)CrossRefGoogle Scholar
  42. 42.
    Kiessling, L.L., Pohl, N.L.: Strength in numbers: non-natural polyvalent carbohydrate derivatives. Chem. Biol. 3, 71–77 (1996)PubMedCrossRefGoogle Scholar
  43. 43.
    Kojima, N., Hakomori, S.: Sialyllactose-mediated cell Interaction during granulosa cell differentiation. J. Biol. Chem. 264, 20159–20162 (1989)PubMedGoogle Scholar
  44. 44.
    Kojima, N., Hakomori, S.: Carbohydrate-carbohydrate interaction of glycosphingolipids. J. Biol. Chem. 266, 17552–17558 (1991)PubMedGoogle Scholar
  45. 45.
    Cunningham, K., Lacy, D.B., Mogridge, J.: Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen. PNAS 99(10), 7049–7053 (2002)PubMedCrossRefGoogle Scholar
  46. 46.
    Lacy, D.B., Mourez, M., Fouassier, A., Collier, R.J.: Mapping the anthrax protective antigen binding site on the lethal and edema factors. J. Biol. Chem. 277(4), 3006–3010 (2002)PubMedCrossRefGoogle Scholar
  47. 47.
    Taylor, M.E.: Recognition of complex carbohydrates by the macrophage mannose receptor. Biochem. Soc. Trans. 21, 468–473 (1993)PubMedGoogle Scholar
  48. 48.
    Stein, M., Keshav, S., Harris, N., Gordon, S.: Interleukin-4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176, 287–292 (1992)PubMedCrossRefGoogle Scholar
  49. 49.
    Stahl, P.D.: The mannose receptor and other macrophage lectins. Curr. Opin. Immunol. 4, 49–52 (1982)CrossRefGoogle Scholar
  50. 50.
    Aderem, A., Underhill, D.M.: Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999)PubMedCrossRefGoogle Scholar
  51. 51.
    Rosenberger, C.M., Finlay, B.B.: Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Mol. Cell. Biol. 4, 385–396 (2003)Google Scholar
  52. 52.
    DeFife, K.M., Jenney, C.R., Colton, E., Anderson, J.M.: Disruption of filamentous actin inhibits human macrophage fusion. FASEB 13, 823–832 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Olga Tarasenko
    • 1
  • Ashley Scott
    • 2
  • Lee Soderberg
    • 2
  • Pierre Alusta
    • 3
    • 4
  1. 1.Department of BiologyUniversity of Arkansas at Little RockLittle RockUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of Arkansas for Medical SciencesLittle RockUSA
  3. 3.Bioinformatics ProgramUniversity of Arkansas at Little RockLittle RockUSA
  4. 4.Bioinformatics ProgramUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations