Glycoconjugate Journal

, Volume 27, Issue 3, pp 375–386 | Cite as

A potent mitogenic lectin from the mycelia of a phytopathogenic fungus, Rhizoctonia bataticola, with complex sugar specificity and cytotoxic effect on human ovarian cancer cells

  • Nagaraja N. Nagre
  • Vishwanath B. Chachadi
  • Palaniswamy M. Sundaram
  • Ramachandra S. Naik
  • Radha Pujari
  • Padma Shastry
  • Bale M. Swamy
  • Shashikala R. Inamdar


A lectin with strong mitogenic activity towards human peripheral blood mononuclear cells (PBMCs) and cytotoxic effect on human ovarian cancer cells has been purified from the mycelium of a phytopathogenic fungus, Rhizoctonia bataticola, using ion exchange chromatography and affinity chromatography on asialofetuin-Sepharose. The lectin, termed RBL, is a tetramer of 11-kDa subunits and has unique amino acid sequence at its blocked N-terminus. The purified RBL was blood group nonspecific and its hemagglutination activity was inhibited by mucin (porcine stomach), fetuin (fetal calf serum) and asialofetuin. Glycan array analysis revealed high affinity binding of RBL towards N-glycans and also the glycoproteins containing complex N-glycan chains. Interestingly, the lectin showed high affinity for glycans which are part of ovarian cancer marker CA125, a high molecular weight mucin containing high mannose and complex bisecting type N-linked glycans as well core 1 and 2 type O-glycans. RBL bound to human PBMCs eliciting strong mitogenic response, which could be blocked by mucin, fetuin and asialofetuin demonstrating the carbohydrate-mediated interaction with the cells. Analysis of the kinetics of binding of RBL to PBMCs revealed a delayed mitogenic response indicating a different signaling pathway compared to phytohemagglutinin-L. RBL had a significant cytotoxic effect on human ovarian cancer cell line, PA-1.


Mitogenic lectin Cytotoxicity Glycan array analysis N-glycans CA125 



The authors thank and acknowledge The Consortium for Functional Glycomics, Emory University School of Medicine, Atlanta, USA for glycan array analysis. This work was supported by a grant (SR/SO/BB/43/2003) funded by Dept. of Science and Technology, New Delhi, India.

Supplementary material

10719_2010_9285_MOESM1_ESM.pdf (25 kb)
ESM 1 (PDF 24 kb)


  1. 1.
    Nangia-Makker, P., Conklin, J., Hogan, V., Raz, A.: Carbohydrate-binding proteins in cancer, and their ligands as therapeutic agents. Trends Mol. Med. 8, 187–192 (2002)CrossRefPubMedGoogle Scholar
  2. 2.
    Gabius, H.J., Wosgein, B., Hendrys, M., Bardosi, A.: Lectin localization in human nerve by biochemically defined lectin binding glycoproteins, neoglycoprotein and lectin specific antibody. Histochemistry 95, 269–277 (1991)CrossRefPubMedGoogle Scholar
  3. 3.
    Miyoshi, N., Koyama, Y., Katsuno, Y., Hayakava, S., Mita, T., Ohta, T., Kaji, K.: Apoptosis induction associated with cell cycle dysregulation by rice brain agglutinin. J. Biochem. (Tokyo) 130, 799–805 (2001)Google Scholar
  4. 4.
    Licastro, F., Morini, M.C., Kretz, O., Dirheimer, E.E., Creppy, F.S.: Mitogenic activity and Immunological properties of bolesatine, a lectin isolated from the mushroom Boletus satanas Lenz. Int. J. Biochem. 25, 789–792 (1993)CrossRefPubMedGoogle Scholar
  5. 5.
    Mahajan, R.G., Patil, S., Mohan, D.R.K., Shastry, P.: Pleurotus eous mushroom lectin (PEL) with mixed carbohydrate inhibition and antiproliferative activity on tumor cell lines. J. Biochem. Mol. Biol. Biophys. 6(5), 341–345 (2002)CrossRefPubMedGoogle Scholar
  6. 6.
    Zhao, J.K., Wang, H.X., Ng, T.B.: Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella. Toxicon. 53(3), 360–366 (2009)CrossRefPubMedGoogle Scholar
  7. 7.
    Wang, H.X., Liu, W.K., Ng, T.B., Ooi, V.E.C., Chang, S.T.: The immunomodulatory and antitumor activities of lectin from the mushroom Tricholoma mongolicum. Immunopharmacol. 31, 205–211 (1996)CrossRefGoogle Scholar
  8. 8.
    Trigueros, V., Lougarre, A., Ali-ahmed, D., Rahbe, Y., Guillot, J., Chavant, L., Fournier, D., Paquereau, L.: Xerocomus chrysenteron lectin: identification a new pesticidal protein. Biochim. Biophys. Acta 1621, 292–298 (2003)PubMedGoogle Scholar
  9. 9.
    Ng, T.B.: Peptides and proteins from fungi. Peptides 25, 1055–1073 (2004)CrossRefPubMedGoogle Scholar
  10. 10.
    Spiro, R.G., Bhoyroo, V.D.: Structure of O-glyosidically linked carbohydrate units of fetuin. J. Biol. Chem. 249(18), 5704–5717 (1974)PubMedGoogle Scholar
  11. 11.
    March, S.C., Parikh, I., Cuatrecasas, P.: A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal. Biochem. 60(1), 149–152 (1974)CrossRefPubMedGoogle Scholar
  12. 12.
    Byrde, R.J., Harris, J.F., Woodcock, D.: Fungal detoxication, the metabolism of ω-(2-naphthyloxy)-n-alkylcarboxylic acids by Aspergillus niger. Biochem. J. 64(1), 154–160 (1956)PubMedGoogle Scholar
  13. 13.
    Duk, M., Lisowska, E., Wu, J.H., Wn, A.M.: The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal. Biochem. 221, 266–272 (1994)CrossRefPubMedGoogle Scholar
  14. 14.
    Goldman, M.: Fluorescent antibody methods. In: Procedures for conjugation, pp. 101–161. Academic Press, New York (1968)Google Scholar
  15. 15.
    Liener, I.E., Hill, E.G.: The effect of heat treatment on the nutritive value and hemagglutinating activity of soybean oil meal. J. Nutr. 49, 609–620 (1953)PubMedGoogle Scholar
  16. 16.
    Lowry, O.H., Rosebrough, N.J., Farr, L.A., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)PubMedGoogle Scholar
  17. 17.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method of determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)CrossRefGoogle Scholar
  18. 18.
    Blixt, O., Head, S., Mondalad, T., Scanlane, C., Huflejt, M.E., Alvarez, R., Bryanh, M.C., Fazioh, F., Calaresee, D., Stevens, J., Razia, N., Stevensi, D.J., Skeheli, J.J., Diej, I., Burtonb, D.R., Wilsonb, I.A., Cummings, R., Bovink, N., Wonga, C.H., Paulson, J.C.: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl Acad. Sci. USA 101, 17033–17038 (2004)CrossRefPubMedGoogle Scholar
  19. 19.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature 227, 680–685 (1970)CrossRefPubMedGoogle Scholar
  20. 20.
    Bergman, T., Gheorge, M.T., Hjelmqvist, L., Jornvall, H.: Alcoholic deblocking of N-terminally acetylated peptides and proteins for sequence analysis. FEBS Lett. 390, 199–202 (1996)CrossRefPubMedGoogle Scholar
  21. 21.
    Mossman, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55–63 (1983)CrossRefGoogle Scholar
  22. 22.
    Kellens, J.T.C., Allen, A.K., Peumans, W.J.: Isolation and characterization of lectins from Rhizoctonia crocorum and Athelia rolfsii. J. Gen. Microbiol. 135, 3127–3132 (1989)Google Scholar
  23. 23.
    Kawagishi, H., Nomura, A., Yumen, T., Mizuno, T.: Isolation and properties of a lectin from the fruiting bodies of Agaricus blazei. Carbohydr. Res. 183, 150–154 (1988)CrossRefPubMedGoogle Scholar
  24. 24.
    Leonidas, D.D., Swamy, B.M., Hatzopoulos, G.N., Gonchigar, S.J., Chachadi, V.B., Inamdar, S.R., Zographos, S.E., Oikonomakos, N.G.: Structural basis for the carbohydrate recognition of the Sclerotium rolfsii lectin. J. Mol. Biol. 368, 1145–1161 (2007)CrossRefPubMedGoogle Scholar
  25. 25.
    Swamy, B.M., Bhat, A.G., Hegde, G.V., Naik, R.S., Kulkarni, S., Inamdar, S.R.: Immunolocalization and functional role of Sclerotium rolfsii lectin in development of fungus by interaction with its endogenous receptor. Glycobiology 14, 951–957 (2004)CrossRefPubMedGoogle Scholar
  26. 26.
    Mghalu, M.J., Horibe, M., Kubota, M., Kawagishi, H., Hyakumachi, M.: Isolation and characterization of lectins from the AG-D group of binucleate Rhizoctonia species. J. Gen. Plant Pathol. 73, 235–241 (2007)CrossRefGoogle Scholar
  27. 27.
    Sathisha, G.J., Subrahmanya, P.Y.K., Chachadi, V.B., Nagaraja, N.N., Inamdar, S.R., Leonidas, D.D., Savithri, H.S., Swamy, B.M.: X-ray sequence ambiguities of Sclerotium rolfsii lectin resolved by mass spectrometry. Amino Acids 35, 309–320 (2008)CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao, C., Sun, H., Tong, X., Qi, Y.: An antitumour lectin from the edible mushroom Agrocybe aegerita. Biochem. J. 374, 321–327 (2003)CrossRefPubMedGoogle Scholar
  29. 29.
    Candy, L., Peumans, W.J., Menu-Bouaouiche, L., Astoul, C.H., Van Damme, J., Van Damme, E.J.M., Erard, M., Rouge, P.: The Gal/GalNAc-specific lectin from the plant pathogenic basidiomycete Rhizoctonia solani is a member of ricin-B family. Biochem. Biophys. Res. Commun. 282, 655–661 (2001)CrossRefPubMedGoogle Scholar
  30. 30.
    Barak, R., Elad, Y., Chet, I.: The properties of L-fucose binding agglutinin associated with the cell wall of Rhizoctonia solani. Arch. Microbiol. 144, 346–349 (1986)CrossRefGoogle Scholar
  31. 31.
    Vranken, A.M., Van Damme, E.J.M., Allen, A.K., Peumans, W.J.: Purification and characterization of an N-acetylgalactosamine specific lectin from the plant pathogenic fungus Rhizoctonia solani. FEBS Lett. 216, 67–72 (1987)CrossRefGoogle Scholar
  32. 32.
    Khan, F., Ahmad, A., Khan, I.: Purification and characterization of a lectin from endophytic fungus Fusarium solani having complex sugar specificity. Arch. Biochem. Biophys. 457(3), 243–251 (2007)CrossRefPubMedGoogle Scholar
  33. 33.
    Thakur, A., Rana, M., Lakhanpal, T.N., Ahmad, A., Khan, M.I.: Purification and characterization of a lectin from fruiting body of Ganoderma lucidum. Biochem. Biophys. Act. 1770, 1404–1412 (2007)Google Scholar
  34. 34.
    Harazono, A., Kawasaki, N., Itoh, S., Hashii, N., Ishii-Watabe, A., Kawanishi, T., Hayakawa, T.: Site-specific N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Biochem. 348, 259–268 (2006)CrossRefPubMedGoogle Scholar
  35. 35.
    Endo, M., Suzuki, K., Schmid, K., Fournet, B., Karamanos, Y., Montereuil, J., Dorland, L., van Halbeek, H., Vliegenthart, J.F.G.: The structures and microheterogeneity of the carbohydrate chains of human plasma ceruloplasmin. J. Biol. Chem. 257(15), 8755–8760 (1982)PubMedGoogle Scholar
  36. 36.
    Nakano, M., Kakehi, K., Tsai, M., Lee, Y.C.: Detailed structural features of glycan chains derived from α1-acid glycoproteins of several different animals: the presence of hypersialylated, O-acetylated sialic acids but not disialyl residues. Glycobiology 14(5), 431–441 (2004)CrossRefPubMedGoogle Scholar
  37. 37.
    Nordman, H., Davis, J.R., Herrmann, A., Karlsonn, N.G., Hansson, G.C., Carlsted, I.: Mucus glycoproteins from pig gastric mucosa: identification of different mucin populations from the surface epithelium. Biochem. J. 326, 903–910 (1997)PubMedGoogle Scholar
  38. 38.
    Pallesen, L.T., Pedersen, L.R.L., Petersen, T.E., Rasmussen, J.T.: Characterization of carbohydrate structures of bovine MUC15 and distribution of the mucin in bovine milk. J. Dairy Sci. 90, 3143–3152 (2007)CrossRefPubMedGoogle Scholar
  39. 39.
    Yu, S.Y., Khoo, K.H., Yang, Z., Herp, A., Wu, A.M.: Glycomic mapping of O- and N-linked glycans from major rat sublingual mucin. Glycoconj. J. 25(3), 199–212 (2008)CrossRefPubMedGoogle Scholar
  40. 40.
    Lloyd, K.O., Yin, B.W.: Synthesis and secretion of the ovarian cancer antigen CA 125 by the human cancer cell line NIH: OVCAR-3. Tumour Biol. 22, 77–82 (2001)CrossRefPubMedGoogle Scholar
  41. 41.
    Wong, N.K., Easton, R.L., Panico, M., Sutton-Smith, M., Morrison, J.C., Lattnzio, F.A., Morris, H.R., Clark, G.F., Dell, A., Patnakar, M.S.: Characterization of oligosaccharides associated with the human ovarian tumor marker CA 125. J. Biol. Chem. 278(31), 28619–28634 (2003)CrossRefGoogle Scholar
  42. 42.
    She, Q.B., Ng, T.B., Liu, W.K.: A novel lectin with potent immunomodulatory activity isolated from both fruiting bodies and cultured mycelia of the edible mushroom Volvariella volvacea. Biochem. Biophys. Res. Commun. 247, 106–111 (1998)CrossRefPubMedGoogle Scholar
  43. 43.
    Tsuda, M.: Purification and characterization of a lectin from the mushroom. Flammulina velutipes. J. Biochem. 86, 1463–1468 (1979)PubMedGoogle Scholar
  44. 44.
    Kawagishi, H., Mitsunaga, S.I., Yamawaki, M., Shimada, M.I.A., Kinoshita, T., Usui, M.T., Kimura, A., Chiba, S.: A lectin from the mycelia of the fungus Ganoderma lucidium. Phytochemistry 44, 7–10 (1997)CrossRefPubMedGoogle Scholar
  45. 45.
    Jeune, K.H., Moon, I.J., Kim, M.K., Chung, S.R.: Studies on lectins from Korean higher fungi: IV. A mitogenic lectin from the mushroom Lentinus edodes. Planta Med. 56, 592–593 (1990)CrossRefGoogle Scholar
  46. 46.
    Wang, H.X., Ng, T.B., Liu, Q.: Isolation of new heterodimeric lectin with the mitogenic activity from fruiting bodies of the mushroom Agrocybe cylindracea. Life Sci. 70, 877–885 (2002)CrossRefPubMedGoogle Scholar
  47. 47.
    Hsu, H.C., Hsu, C.I., Lin, R.H., Kao, C.L., Lin, J.Y.: A new fungal immunomodulatory protein isolated from Volvariella volvacea. Biochem. J. 323, 557–565 (1997)PubMedGoogle Scholar
  48. 48.
    Ko, J.L., Hsu, C.I., Lin, R.H., Kao, C.L., Lin, J.Y.: A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes, and its complete amino acid sequence. Eur. J. Biochem. 228, 244–249 (1995)CrossRefPubMedGoogle Scholar
  49. 49.
    Lin, W.H., Hung, C.H., Hsu, C.I., Lin, J.Y.: Dimidiation of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by yeast hybrid system and site directed mutagenesis. J. Biol. Chem. 272, 20044–20048 (1997)CrossRefPubMedGoogle Scholar
  50. 50.
    Lin, J.Y., Chou, T.B.: Isolation and characterization of a lectin from edible mushroom, Volvariella volvacea. J. Biochem. (Tokyo) 96, 35–40 (1984)Google Scholar
  51. 51.
    Kawagishi, H., Nomura, A., Mizuno, T., Kimura, A., Chiba, S.: Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochim. Biophys. Acta 1034, 247–252 (1990)PubMedGoogle Scholar
  52. 52.
    Yu, L.G., Fernig, D.G., White, M.R., Spiller, D.G., Appleton, P., Evans, R.C., Grierson, I., Smith, J.A., Davies, H., Gerasimenko, O.V.: Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks nuclear localization sequence-dependent nuclear protein import. J. Biol. Chem. 274, 4890–4899 (1999)CrossRefPubMedGoogle Scholar
  53. 53.
    Wang, H.X., Ng, T.B., Ooi, V.E.C., Liu, W.K., Chang, S.T.: Actions of lectins from the mushroom Tricholoma mongolicum on macrophages, splenocytes and life-span in sarcoma-bearing mice. Anticancer Res. 17, 419–424 (1997)PubMedGoogle Scholar
  54. 54.
    Lafont, V., Dornand, J., Covassin, L., Liautarad, J.P., Favero, J.: The lectin jacalin triggers CD4 mediated lymphocyte signaling by binding CD4 through a protein-protein interaction. J. Leukoc. Biol. 59, 691–696 (1996)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nagaraja N. Nagre
    • 1
  • Vishwanath B. Chachadi
    • 1
  • Palaniswamy M. Sundaram
    • 1
  • Ramachandra S. Naik
    • 1
  • Radha Pujari
    • 2
  • Padma Shastry
    • 2
  • Bale M. Swamy
    • 1
  • Shashikala R. Inamdar
    • 1
  1. 1.Department of BiochemistryKarnatak UniversityDharwadIndia
  2. 2.National Center for Cell SciencesPuneIndia

Personalised recommendations