Advertisement

Glycoconjugate Journal

, Volume 27, Issue 1, pp 133–150 | Cite as

Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta

  • Amita Joshi
  • Hung Quang Dang
  • Neha Vaid
  • Narendra Tuteja
Article

Abstract

The plant lectin receptor-like kinases (LecRLKs) are involved in various signaling pathways but their role in salinity stress tolerance has not heretofore been well described. Salinity stress negatively affects plant growth/productivity and threatens food security worldwide. Based on functional gene-mining assay, we have isolated 34 salinity tolerant genes out of one million Escherichia coli (SOLR) transformants containing pea cDNAs grown in 0.8 M NaCl. Sequence analysis of one of these revealed homology to LecRLK, which possesses N-myristilation and N-glycosylation sites thus corroborating the protein to be a glycoconjugate. The homology based computational modeling of the kinase domain suggested high degree of conservation with the protein already known to be stress responsive in plants. The NaCl tolerance provided by PsLecRLK to the above bacteria was further confirmed in E. coli (DH5α). In planta studies showed that the expression of PsLecRLK cDNA was significantly upregulated in response to NaCl as compared to K+ and Li+ ions, suggesting the Na+ ion specific response. Transcript of the PsLecRLK gene accumulates mainly in roots and shoots. The purified 47 kDa recombinant PsLecRLK-KD (kinase domain) protein has been shown to phosphorylate general substrates like MBP and casein. This study not only suggests the conservation of the cellular response to high salinity stress across prokaryotes and plant kingdom but also provides impetus to develop novel concepts for better understanding of mechanism of stress tolerance in bacteria and plants. It also opens up new avenues for studying practical aspects of plant salinity tolerance for enhanced agricultural productivity.

Keywords

Escherichia coli Functional screening Glycoconjugates Lectin receptor-like kinase Pisum sativum Salinity stress tolerance 

Abbreviations

CSR

cellular stress response

E. coli

Escherichia coli

IPTG

isopropyl thio-β-D-galactopyranoside

LecRLK

lectin receptor-like kinase

MBP

Mylein basic protein

Notes

Acknowledgements

We thank Drs. Sudhir K. Sopory, Renu Tuteja (ICGEB, New Delhi, India) and Ananda Mohan Chakrabarty (University of Illinois at Chicago, USA) for helpful comments/corrections. Work on plant stress tolerance in NT’s laboratory is partially supported by Department of Science and Technology (DST), Government of India and Department of Biotechnology (DBT), Government of India.

References

  1. 1.
    Wyatt, S.E., Carpita, N.C.: The plant cytoskeleton-cell-wall continuum. Trends Cell Biol. 3, 413–417 (1993)CrossRefPubMedGoogle Scholar
  2. 2.
    Gouget, A., Senchou, V., Govers, F., Sanson, A., Barre, A., Rougé, P., Pont-Lezica, R., Canut, H.: Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol. 140, 81–90 (2006)CrossRefPubMedGoogle Scholar
  3. 3.
    Walker, J.C.: Structure and function of the receptor-like protein kinases of higher plants. Plant Mol. Biol. 26, 1599–1609 (1994)CrossRefPubMedGoogle Scholar
  4. 4.
    Nishiguchi, M., Yoshida, K., Sumizono, T., Tazaki, K.: A receptor-like protein kinase with a lectin-like domain from lombardy poplar: gene expression in response to wounding and characterization of phosphorylation activity. MGG. 267, 506–514 (2002)PubMedGoogle Scholar
  5. 5.
    Shiu, S.H., Bleecker, A.B.: Plant receptor-like kinase gene family: diversity, function, and signaling. Sci. STKE 2001, re22 (2001). (doi: 10.1126/stke.2001.113.re22)
  6. 6.
    Herve, C., Serres, J., Dabos, P., Canut, H., Barre, A., Rouge, P., Lescure, B.: Characterization of the Arabidopsis lecRK-a genes: a member of a super family encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Mol. Biol. 39, 671–682 (1999)CrossRefPubMedGoogle Scholar
  7. 7.
    Navarro-Gochicoa, M.T., Camut, S., Timmers, A.C.J., Niebel, A., Herve, C., Boutet, E., Bono, J.J., Imberty, A., Cullimore, J.V.: Characterization of four lectin-like receptor kinases expressed in roots of medicago truncatula. structure, location, regulation of expression, and potential role in the symbiosis with sinorhizobium meliloti. Plant Physiol. 133, 1893–1910 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    Barre, A., Herve, C., Lescure, B., Rouge, P.: Lectin receptor kinases in plants. Crit. Rev. Plant Sci. 21, 379–399 (2002)CrossRefGoogle Scholar
  9. 9.
    Riou, C., Herve, C., Pacquit, V., Dabos, P., Lescure, B.: Expression of an Arabidopsis lectin kinase gene, lecRK-a1, is induced during senescence, wounding and in response to oligogalacturonic acids. Plant Physiol. Biochem. 40, 431–438 (2002)CrossRefGoogle Scholar
  10. 10.
    Wan, J., Patel, A., Mathieu, M., Kim, S.Y., Xu, D., Stacey, G.: A lectin receptor-like kinase is required for pollen development in Arabidopsis. Plant Mol. Biol. 67, 469–482 (2008)CrossRefPubMedGoogle Scholar
  11. 11.
    He, X.-J., Zhang, Z.-G., Yan, D.-Q., Zhang, J.-S., Chen, S.-Y.: A salt-responsive receptor-like gene regulated by ethylene signaling pathway encodes a plasma membrane serine-threonine kinase. Theor. Appl. Genet. 109, 377–383 (2004)CrossRefPubMedGoogle Scholar
  12. 12.
    Bray, E.A., Bailey-Serres, J., Weretilnyk, E.: Responses to abiotic stresses. In Buchanan, BB., Gruissem, W., Jones, RL. (eds.) Biochemistry and Molecular Biology of Plants, American Society of Plant Biologists, Rockville MD, pp. 1158–1203 (2000)Google Scholar
  13. 13.
    Mahajan, S., Tuteja, N.: Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophy. 444, 139–158 (2005)CrossRefGoogle Scholar
  14. 14.
    Tuteja, N.: Mechanisms of high salinity tolerance in plants. Methods Enzymol. 428, 419–438 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    Tuteja, N.: Cold, salt and drought stress. In: Hirt, H. (ed.) Plant stress biology: From genomics towards system biology. Wiley-Blackwell in Weinheim, Germany, pp. 137–159 (2009)Google Scholar
  16. 16.
    Kultz, D.: Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J. Exp. Biol 206, 3119–3124 (2003)CrossRefPubMedGoogle Scholar
  17. 17.
    Sung, D.Y., Kaplan, F., Lee, K.J., Guy, C.L.: Acquired tolerance to temperature extremes. Trends Plant Sci. 4, 179–187 (2003)CrossRefGoogle Scholar
  18. 18.
    Mahajan, S., Pandey, G., Tuteja, N.: Calcium and salt stress signaling in plants: shedding light on SOS pathway. Arch. Biochem. Biophys. 471, 146–158 (2008)CrossRefPubMedGoogle Scholar
  19. 19.
    Kanhonou, R., Serrano, R., Palau, R.R.: A catalytic subunit of the sugar beet protein kinase CK2 is induced by salt stress and increases NaCl tolerance in Saccharomyces cerevisiae. Plant Mol. Biol. 47, 571–579 (2001)CrossRefPubMedGoogle Scholar
  20. 20.
    Forment, J., Naranjo, M.A., Roldan, M., Serrano, R., Vicente, O.: Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant J. 30, 511–519 (2002)CrossRefPubMedGoogle Scholar
  21. 21.
    Rausell, A., Kanhonou, R., Yenush, L., Serrano, R., Ros, R.: The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant J. 34, 257–267 (2003)CrossRefPubMedGoogle Scholar
  22. 22.
    Mundree, S.G., Whittaker, A., Thomson, J.A., Farrant, J.M.: An aldose reductase homolog from the resurrection plant Xerophyta viscosa. Planta 211, 693–700 (2000)CrossRefPubMedGoogle Scholar
  23. 23.
    Yamada, A., Saitoh, T., Mimura, T., Ozeki, Y.: Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol. 4, 903–910 (2002)CrossRefGoogle Scholar
  24. 24.
    Yamada, A., Tsutsumi, K., Tanimoto, S., Ozeki, Y.: Plant RelA/SpoT homolog confers salt tolerance in Escherichia coli and Saccharomyces cerevisiae. Plant Cell Physiol. 44, 3–9 (2003)CrossRefPubMedGoogle Scholar
  25. 25.
    Joshi, A., Dang, H.Q., Vaid, N., Tuteja, N.: Isolation of high salinity stress tolerant genes from Pisum sativum by random overexpression in Escherichia coli and their functional validation. Plant Signal Behav 4, 400–412 (2009)PubMedCrossRefGoogle Scholar
  26. 26.
    Leone, A., Costa, A., Consiglio, F., Massarelli, I., Dragonetti, E., De Palma, M., Grillo, S.: Tolerance to abiotic stresses in potato plants: a molecular approach. Potato Res. 42, 333–351 (1999)CrossRefGoogle Scholar
  27. 27.
    Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251–264 (1994)CrossRefPubMedGoogle Scholar
  28. 28.
    Thomson, J.D., Higgings, D.G., Gibson, T.J.: CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix chose. Nucl. Acids Res 22, 4673–4680 (1994)CrossRefGoogle Scholar
  29. 29.
    Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J. Computational Biology. 9, 687–706 (2002)CrossRefGoogle Scholar
  30. 30.
    Tuteja, N., Beven, A.F., Shaw, P.J., Tuteja, R.: A pea homologue of human DNA helicase I is localised within the dense fibrillar component of the nucleolus and stimulated by phosphorylation with CK2 and cdc2 protein kinases. Plant J. 25, 9–17 (2001)CrossRefPubMedGoogle Scholar
  31. 31.
    Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, J., Hayashizaki, Y., Shinozaki, K.: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31, 279–292 (2002)CrossRefPubMedGoogle Scholar
  32. 32.
    Sahi, C., Agarwal, M., Reddy, M.K., Sopory, S.K., Grover, A.: Isolation expression analysis of salt stress associated ESTs from contrasting rice cultivars using a PCR-based subtraction methods. Theor. Appl. Genet. 8, 1–18 (2002)Google Scholar
  33. 33.
    Shiozaki, N., Yamada, M., Yoshiba, Y.: Analysis of salt-stress-inducible ESTs isolated by PCR-subtraction in salt-tolerant rice. Theor. Appl. Genet. 110, 1177–1186 (2005)CrossRefPubMedGoogle Scholar
  34. 34.
    Munoz, G., Gonzalez, C., Flores, P., Prado, B., Campos, V.: Comparison between the polypeptide profile of halophilic bacteria and salt tolerant plants. Microbiologia 3, 489–492 (1997)Google Scholar
  35. 35.
    Massarelli, I., Cioffi, R., Batelli, G., De Palma, M., Costa, A., Grill, S., Leone, A.: Functional screening of plant stress-related cDNAs by random overexpression in Escherichia coli. Plant Sci. 170, 880–888 (2006)CrossRefGoogle Scholar
  36. 36.
    Nguyen, P.D., Ho, C.L., Harikrishna, J.A., Wong, M.C.V.L., Raha, A.R.: Functional screening for salinity tolerant genes from Acanthus ebracteatus Vahl using Escherichia coli as a host. Trees-Struct. Funct. 21, 515–520 (2007)Google Scholar
  37. 37.
    Soto, A., Allona, I., Collada, C., Guevara, M.A., Casado, R., Rodriguez-Cerezo, E., Aragoncillo, C., Gomez, L.: Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 120, 521–528 (1999)CrossRefPubMedGoogle Scholar
  38. 38.
    Loris, R., Hamelryck, T., Bouckaert, J., Wyns, L.: Legume lectin structure. Biochim. Biophys. Acta 1383, 9–39 (1998)PubMedGoogle Scholar
  39. 39.
    Konami, Y., Yamamoto, K., Osawa, T.: The primary structures of two types of the Ulex europeus seed lectin. J. Biochem. 109, 650–658 (1991)PubMedGoogle Scholar
  40. 40.
    Sasabe, M., Naito, K., Suenaga, H., Ikeda, T., Toyoda, K., Inagaki, Y., Shiraishi, T., Ichinose, Y.: Elicitin-responsive lectin-like receptor kinase genes in BY-2 cells. DNA Seq. 18, 152–159 (2007)CrossRefPubMedGoogle Scholar
  41. 41.
    Argüelles, J.C.: Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch. Microbiol. 17, 217–224 (2000)Google Scholar
  42. 42.
    Mishra, N.S., Tuteja, R., Tuteja, N.: Signaling through MAP kinase networks in plants. Arch. Biochem. Biophys. 45, 55–68 (2006)CrossRefGoogle Scholar
  43. 43.
    Zhu, J.K.: Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4, 401–416 (2001)CrossRefPubMedGoogle Scholar
  44. 44.
    Kreps, J.A., Wu, Y., Chang, H.S., Zhu, T., Wang, X., Harper, J.F.: Transcriptome change for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 2129–2141 (2002)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Amita Joshi
    • 1
  • Hung Quang Dang
    • 1
  • Neha Vaid
    • 1
  • Narendra Tuteja
    • 1
  1. 1.Plant Molecular Biology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia

Personalised recommendations