Skip to main content

Advertisement

Log in

Glycosyltransferase and sulfotransferase gene expression profiles in human monocytes, dendritic cells and macrophages

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Using a focused glycan-gene microarray, we compared the glycosyltransferase (GT) and sulfotransferase gene expression profiles of human monocytes, dendritic cells (DCs) and macrophages (Mϕs), isolated or differentiated from the same donors. Microarray analysis indicated that monocytes express transcripts for a full set of enzymes involved in the biosynthesis of multi-multiantennary branched N-glycans, potentially elongated by poly-N-acetyl-lactosamine chains, and of mucin-type Core 1 and Core 2 sialylated O-glycans. Monocytes also express genes involved in the biosynthesis and modification of glycosaminoglycans, but display a limited expression of GTs implicated in glycolipid synthesis. Among genes expressed in monocytes (90 out of 175), one third is significantly modulated in DCs and Mϕ respectively, most of them being increased in both cell types relative to monocytes. These changes might potentially enforce the capacity of differentiated cells to synthesize branched N-glycans and mucin-type O-glycans and to remodel cell surface proteoglycans. Stimulation of DCs and Mϕs with lipopolysaccharide caused a general decrease in gene expression, mainly affecting genes found to be positively modulated during the differentiation steps. Interestingly, although a similar set of enzymes are modulated in the same direction in mature DCs and Mϕs, cell specific genes are also differentially regulated during maturation, a phenomenon that may sustain functional specificities. Validation of this analysis was provided by quantitative real-time PCR and flow cytometry of cell surface glycan antigens. Collectively, this study implies an important modification of the pattern of glycosylation in DCs and Mϕs undergoing differentiation and maturation with potential biological consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cell

DC:

Dendritic cell

Ag:

Antigen

GSL:

Glycosphingolipid

GT:

Glycosyltransferase

Mϕ:

Macrophage

TLR:

Toll-like receptor

sLex :

Sialyl Lex

GAG:

Glycosaminoglycan

ST:

Sialyltransferase

PSA:

Polysialic acid

HS:

Heparan sulfate

qPCR:

Quantitative real-time PCR

LPS:

Lipopolysaccharide

MFI:

Mean fluorescence intensity

GM-CSF:

Granulocyte Mϕ-colony stimulating factor

References

  1. Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M., Dwek, R.A.: The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007). doi:10.1146/annurev.immunol.25.022106.141702

    Article  CAS  PubMed  Google Scholar 

  2. Collins, B.E., Paulson, J.C.: Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Curr. Opin. Chem. Biol. 8, 617–625 (2004). doi:10.1016/j.cbpa.2004.10.004

    Article  CAS  PubMed  Google Scholar 

  3. Daniels, M.A., Hogquist, K.A., Jameson, S.C.: Sweet ’n’ sour: the impact of differential glycosylation on T cell responses. Nat. Immunol. 3, 903–910 (2002). doi:10.1038/ni1002-903

    Article  CAS  PubMed  Google Scholar 

  4. Marth, J.D., Grewal, P.K.: Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874–887 (2008). doi:10.1038/nri2417

    Article  CAS  PubMed  Google Scholar 

  5. Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A., Dwek, R.A.: Glycosylation and the immune system. Science 291, 2370–2376 (2001). doi:10.1126/science.291.5512.2370

    Article  CAS  PubMed  Google Scholar 

  6. Spiro, R.G.: Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R–56R (2002). doi:10.1093/glycob/12.4.43R

    Article  CAS  PubMed  Google Scholar 

  7. Crocker, P.R.: Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr. Opin. Struct. Biol. 12, 609–615 (2002). doi:10.1016/S0959-440X(02)00375-5

    Article  CAS  PubMed  Google Scholar 

  8. Esko, J.D., Selleck, S.B.: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002). doi:10.1146/annurev.biochem.71.110601.135458

    Article  CAS  PubMed  Google Scholar 

  9. Lau, K.S., Partridge, E.A., Grigorian, A., Silvescu, C.I., Reinhold, V.N., Demetriou, M., Dennis, J.W.: Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129, 123–134 (2007). doi:10.1016/j.cell.2007.01.049

    Article  CAS  PubMed  Google Scholar 

  10. Lowe, J.B.: Glycosyltransferases and glycan structures contributing to the adhesive activities of L-, E- and P-selectin counter-receptors. Biochem. Soc. Symp. 69, 33–45 (2002)

    CAS  PubMed  Google Scholar 

  11. Moody, A.M., Chui, D., Reche, P.A., Priatel, J.J., Marth, J.D., Reinherz, E.L.: Developmentally regulated glycosylation of the CD8alphabeta coreceptor stalk modulates ligand binding. Cell 107, 501–512 (2001). doi:10.1016/S0092-8674(01)00577-3

    Article  CAS  PubMed  Google Scholar 

  12. Rabinovich, G.A., Baum, L.G., Tinari, N., Paganelli, R., Natoli, C., Liu, F.T., Iacobelli, S.: Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 23, 313–320 (2002). doi:10.1016/S1471-4906(02)02232-9

    Article  CAS  PubMed  Google Scholar 

  13. Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Poirier, F., Riley, E.M., Baum, L.G., Rabinovich, G.A.: Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8, 825–834 (2007). doi:10.1038/ni1482

    Article  CAS  PubMed  Google Scholar 

  14. Blander, J.M., Visintin, I., Janeway Jr., C.A., Medzhitov, R.: Alpha(1, 3)-fucosyltransferase VII and alpha(2, 3)-sialyltransferase IV are up-regulated in activated CD4 T cells and maintained after their differentiation into Th1 and migration into inflammatory sites. J. Immunol. 163, 3746–3752 (1999)

    CAS  PubMed  Google Scholar 

  15. Collins, B.E., Blixt, O., Han, S., Duong, B., Li, H., Nathan, J.K., Bovin, N., Paulson, J.C.: High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J. Immunol. 177, 2994–3003 (2006)

    CAS  PubMed  Google Scholar 

  16. Feizi, T.: Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000). doi:10.1034/j.1600-065X.2000.917310.x

    Article  CAS  PubMed  Google Scholar 

  17. Moody, A.M., North, S.J., Reinhold, B., Van Dyken, S.J., Rogers, M.E., Panico, M., Dell, A., Morris, H.R., Marth, J.D., Reinherz, E.L.: Sialic acid capping of CD8beta core 1-O-glycans controls thymocyte-major histocompatibility complex class I interaction. J. Biol. Chem. 278, 7240–7246 (2003). doi:10.1074/jbc.M210468200

    Article  CAS  PubMed  Google Scholar 

  18. Morgan, R., Gao, G., Pawling, J., Dennis, J.W., Demetriou, M., Li, B.: N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J. Immunol. 173, 7200–7208 (2004)

    CAS  PubMed  Google Scholar 

  19. Pappu, B.P., Shrikant, P.A.: Alteration of cell surface sialylation regulates antigen-induced naive CD8+ T cell responses. J. Immunol. 173, 275–284 (2004)

    CAS  PubMed  Google Scholar 

  20. van Kooyk, Y., Rabinovich, G.A.: Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601 (2008). doi:10.1038/ni.f.203

    Article  PubMed  Google Scholar 

  21. Demetriou, M., Granovsky, M., Quaggin, S., Dennis, J.W.: Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001). doi:10.1038/35055582

    Article  CAS  PubMed  Google Scholar 

  22. Moretta, L., Bottino, C., Pende, D., Castriconi, R., Mingari, M.C., Moretta, A.: Surface NK receptors and their ligands on tumor cells. Semin. Immunol. 18, 151–158 (2006). doi:10.1016/j.smim.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  23. Bendelac, A., Savage, P.B., Teyton, L.: The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007). doi:10.1146/annurev.immunol.25.022106.141711

    Article  CAS  PubMed  Google Scholar 

  24. Godfrey, D.I., Kronenberg, M.: Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004)

    CAS  PubMed  Google Scholar 

  25. Bax, M., Garcia-Vallejo, J.J., Jang-Lee, J., North, S.J., Gilmartin, T.J., Hernandez, G., Crocker, P.R., Leffler, H., Head, S.R., Haslam, S.M., Dell, A., van Kooyk, Y.: Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J. Immunol. 179, 8216–8224 (2007)

    CAS  PubMed  Google Scholar 

  26. Julien, S., Grimshaw, M.J., Sutton-Smith, M., Coleman, J., Morris, H.R., Dell, A., Taylor-Papadimitriou, J., Burchell, J.M.: Sialyl-Lewis(x) on P-selectin glycoprotein ligand-1 is regulated during differentiation and maturation of dendritic cells: a mechanism involving the glycosyltransferases C2GnT1 and ST3Gal I. J. Immunol. 179, 5701–5710 (2007)

    CAS  PubMed  Google Scholar 

  27. Gordon, S., Taylor, P.R.: Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005). doi:10.1038/nri1733

    Article  CAS  PubMed  Google Scholar 

  28. Hume, D.A., Ross, I.L., Himes, S.R., Sasmono, R.T., Wells, C.A., Ravasi, T.: The mononuclear phagocyte system revisited. J. Leukoc. Biol. 72, 621–627 (2002)

    CAS  PubMed  Google Scholar 

  29. Randolph, G.J., Beaulieu, S., Lebecque, S., Steinman, R.M., Muller, W.A.: Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282, 480–483 (1998). doi:10.1126/science.282.5388.480

    Article  CAS  PubMed  Google Scholar 

  30. Randolph, G.J., Inaba, K., Robbiani, D.F., Steinman, R.M., Muller, W.A.: Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761 (1999). doi:10.1016/S1074-7613(00)80149-1

    Article  CAS  PubMed  Google Scholar 

  31. Banchereau, J., Steinman, R.M.: Dendritic cells and the control of immunity. Nature 392, 245–252 (1998). doi:10.1038/32588

    Article  CAS  PubMed  Google Scholar 

  32. Kapsenberg, M.L.: Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 3, 984–993 (2003). doi:10.1038/nri1246

    Article  CAS  PubMed  Google Scholar 

  33. Reis e Sousa, C.: Dendritic cells in a mature age. Nat. Rev. Immunol. 6, 476–483 (2006). doi:10.1038/nri1845

    Article  CAS  Google Scholar 

  34. Rossi, M., Young, J.W.: Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J. Immunol. 175, 1373–1381 (2005)

    CAS  PubMed  Google Scholar 

  35. Iwasaki, A., Medzhitov, R.: Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004). doi:10.1038/ni1112

    Article  CAS  PubMed  Google Scholar 

  36. Takeda, K., Akira, S.: Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 (2005). doi:10.1093/intimm/dxh186

    Article  CAS  PubMed  Google Scholar 

  37. Gosset, P., Bureau, F., Angeli, V., Pichavant, M., Faveeuw, C., Tonnel, A.B., Trottein, F.: Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. J. Immunol. 170, 4943–4952 (2003)

    CAS  PubMed  Google Scholar 

  38. Sallusto, F., Lanzavecchia, A.: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–1118 (1994). doi:10.1084/jem.179.4.1109

    Article  CAS  PubMed  Google Scholar 

  39. Young, D.A., Lowe, L.D., Clark, S.C.: Comparison of the effects of IL-3, granulocyte-macrophage colony-stimulating factor, and macrophage colony-stimulating factor in supporting monocyte differentiation in culture. Analysis of macrophage antibody-dependent cellular cytotoxicity. J. Immunol. 145, 607–615 (1990)

    CAS  PubMed  Google Scholar 

  40. Turville, S.G., Cameron, P.U., Handley, A., Lin, G., Pohlmann, S., Doms, R.W., Cunningham, A.L.: Diversity of receptors binding HIV on dendritic cell subsets. Nat. Immunol. 3, 975–983 (2002). doi:10.1038/ni841

    Article  CAS  PubMed  Google Scholar 

  41. van Kooyk, Y., Geijtenbeek, T.B.: DC-SIGN: escape mechanism for pathogens. Nat. Rev. Immunol. 3, 697–709 (2003). doi:10.1038/nri1182

    Article  PubMed  Google Scholar 

  42. Fleetwood, A.J., Lawrence, T., Hamilton, J.A., Cook, A.D.: Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J. Immunol. 178, 5245–5252 (2007)

    CAS  PubMed  Google Scholar 

  43. Verreck, F.A., de Boer, T., Langenberg, D.M., Hoeve, M.A., Kramer, M., Vaisberg, E., Kastelein, R., Kolk, A., de Waal-Malefyt, R., Ottenhoff, T.H.: Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco) bacteria. Proc. Natl. Acad. Sci. USA 101, 4560–4565 (2004). doi:10.1073/pnas.0400983101

    Article  CAS  PubMed  Google Scholar 

  44. Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., Brown, E.L.: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680 (1996). doi:10.1038/nbt1296-1675

    Article  CAS  PubMed  Google Scholar 

  45. Hess, A., Iyer, H.: Fisher’s combined p-value for detecting differentially expressed genes using Affymetrix expression arrays. BMC Genomics 8, 96 (2007). doi:10.1186/1471-2164-8-96

    Article  PubMed  Google Scholar 

  46. Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P.: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003). doi:10.1093/bioinformatics/19.2.185

    Article  CAS  PubMed  Google Scholar 

  47. Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., Speed, T.P.: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003). doi:10.1093/nar/gng015

    Article  PubMed  Google Scholar 

  48. Elbim, C., Hakim, J., Gougerot-Pocidalo, M.A.: Heterogeneity in Lewis-X and sialyl-Lewis-X antigen expression on monocytes in whole blood: relation to stimulus-induced oxidative burst. Am. J. Pathol. 152, 1081–1090 (1998)

    CAS  PubMed  Google Scholar 

  49. Skacel, P.O., Edwards, A.J., Harrison, C.T., Watkins, W.M.: Enzymic control of the expression of the X determinant (CD15) in human myeloid cells during maturation: the regulatory role of 6-sialytransferase. Blood 78, 1452–1460 (1991)

    CAS  PubMed  Google Scholar 

  50. Becker, S., Warren, M.K., Haskill, S.: Colony-stimulating factor-induced monocyte survival and differentiation into macrophages in serum-free cultures. J. Immunol. 139, 3703–3709 (1987)

    CAS  PubMed  Google Scholar 

  51. Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., Steinman, R.M.: Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992). doi:10.1084/jem.176.6.1693

    Article  CAS  PubMed  Google Scholar 

  52. Sasaki, K., Kurata-Miura, K., Ujita, M., Angata, K., Nakagawa, S., Sekine, S., Nishi, T., Fukuda, M.: Expression cloning of cDNA encoding a human beta-1, 3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. Proc. Natl. Acad. Sci. USA 94, 14294–14299 (1997). doi:10.1073/pnas.94.26.14294

    Article  CAS  PubMed  Google Scholar 

  53. Weinhold, B., Seidenfaden, R., Rockle, I., Muhlenhoff, M., Schertzinger, F., Conzelmann, S., Marth, J.D., Gerardy-Schahn, R., Hildebrandt, H.: Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J. Biol. Chem. 280, 42971–42977 (2005). doi:10.1074/jbc.M511097200

    Article  CAS  PubMed  Google Scholar 

  54. Curreli, S., Arany, Z., Gerardy-Schahn, R., Mann, D., Stamatos, N.M.: Polysialylated neuropilin-2 is expressed on the surface of human dendritic cells and modulates dendritic cell-T lymphocyte interactions. J. Biol. Chem. 282, 30346–30356 (2007). doi:10.1074/jbc.M702965200

    Article  CAS  PubMed  Google Scholar 

  55. Kitagawa, H., Shimakawa, H., Sugahara, K.: The tumor suppressor EXT-like gene EXTL2 encodes an alpha1, 4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem. 274, 13933–13937 (1999). doi:10.1074/jbc.274.20.13933

    Article  CAS  PubMed  Google Scholar 

  56. Wegrowski, Y., Milard, A.L., Kotlarz, G., Toulmonde, E., Maquart, F.X., Bernard, J.: Cell surface proteoglycan expression during maturation of human monocytes-derived dendritic cells and macrophages. Clin. Exp. Immunol. 144, 485–493 (2006). doi:10.1111/j.1365-2249.2006.03059.x

    Article  CAS  PubMed  Google Scholar 

  57. Jenner, J., Kerst, G., Handgretinger, R., Muller, I.: Increased alpha2, 6-sialylation of surface proteins on tolerogenic, immature dendritic cells and regulatory T cells. Exp. Hematol. 34, 1212–1218 (2006). doi:10.1016/j.exphem.2006.04.016

    Article  CAS  PubMed  Google Scholar 

  58. Martinez, F.O., Gordon, S., Locati, M., Mantovani, A.: Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177, 7303–7311 (2006)

    CAS  PubMed  Google Scholar 

  59. Suzuki, A., Yamakawa, M., Tsukamoto, M.: The adhesion molecules, l-selectin and sialyl lewis x, relate to the formation of the follicular dendritic cell-lymphocyte cluster in the mantle zone. Immunol. Lett. 79, 181–187 (2001). doi:10.1016/S0165-2478(01)00282-6

    Article  CAS  PubMed  Google Scholar 

  60. Crocker, P.R.: Siglecs in innate immunity. Curr. Opin. Pharmacol. 5, 431–437 (2005). doi:10.1016/j.coph.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  61. Campbell, B.J., Yu, L.G., Rhodes, J.M.: Altered glycosylation in inflammatory bowel disease: a possible role in cancer development. Glycoconj. J. 18, 851–858 (2001). doi:10.1023/A:1022240107040

    Article  CAS  PubMed  Google Scholar 

  62. Coulouarn, C., Lefebvre, G., Derambure, C., Lequerre, T., Scotte, M., Francois, A., Cellier, D., Daveau, M., Salier, J.P.: Altered gene expression in acute systemic inflammation detected by complete coverage of the human liver transcriptome. Hepatology 39, 353–364 (2004). doi:10.1002/hep.20052

    Article  CAS  PubMed  Google Scholar 

  63. Van Dijk, W., Brinkman-Van der Linden, E.C., Havenaar, E.C.: Occurrence and possible function of inflammation-induced expression of sialyl Lewis-x on acute-phase proteins. Adv. Exp. Med. Biol 435, 145–150 (1998)

    PubMed  Google Scholar 

  64. Kim, B.T., Kitagawa, H., Tanaka, J., Tamura, J., Sugahara, K.: In vitro heparan sulfate polymerization: crucial roles of core protein moieties of primer substrates in addition to the EXT1-EXT2 interaction. J. Biol. Chem. 278, 41618–41623 (2003). doi:10.1074/jbc.M304831200

    Article  CAS  PubMed  Google Scholar 

  65. Brigl, M., Bry, L., Kent, S.C., Gumperz, J.E., Brenner, M.B.: Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4, 1230–1237 (2003). doi:10.1038/ni1002

    Article  CAS  PubMed  Google Scholar 

  66. De Libero, G., Moran, A.P., Gober, H.J., Rossy, E., Shamshiev, A., Chelnokova, O., Mazorra, Z., Vendetti, S., Sacchi, A., Prendergast, M.M., Sansano, S., Tonevitsky, A., Landmann, R., Mori, L.: Bacterial infections promote T cell recognition of self-glycolipids. Immunity 22, 763–772 (2005). doi:10.1016/j.immuni.2005.04.013

    Article  PubMed  Google Scholar 

  67. Mattner, J., Debord, K.L., Ismail, N., Goff, R.D., Cantu 3rd, C., Zhou, D., Saint-Mezard, P., Wang, V., Gao, Y., Yin, N., Hoebe, K., Schneewind, O., Walker, D., Beutler, B., Teyton, L., Savage, P.B., Bendelac, A.: Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005). doi:10.1038/nature03408

    Article  CAS  PubMed  Google Scholar 

  68. Paget, C., Mallevaey, T., Speak, A.O., Torres, D., Fontaine, J., Sheehan, K.C., Capron, M., Ryffel, B., Faveeuw, C., Leite de Moraes, M., Platt, F., Platt, F., Trottein, F., Trottein, F.: Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27, 597–609 (2007). doi:10.1016/j.immuni.2007.08.017

    Article  CAS  PubMed  Google Scholar 

  69. Salio, M., Speak, A.O., Shepherd, D., Polzella, P., Illarionov, P.A., Veerapen, N., Besra, G.S., Platt, F.M., Cerundolo, V.: Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc. Natl. Acad. Sci. USA 104, 20490–20495 (2007). doi:10.1073/pnas.0710145104

    Article  CAS  PubMed  Google Scholar 

  70. Tupin, E., Kinjo, Y., Kronenberg, M.: The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5, 405–417 (2007). doi:10.1038/nrmicro1657

    Article  CAS  PubMed  Google Scholar 

  71. Garcia-Vallejo, J.J., Gringhuis, S.I., van Dijk, W., van Die, I.: Gene expression analysis of glycosylation-related genes by real-time polymerase chain reaction. Methods Mol. Biol. 347, 187–209 (2006)

    CAS  PubMed  Google Scholar 

  72. Groux-Degroote, S., Krzewinski-Recchi, M.A., Cazet, A., Vincent, A., Lehoux, S., Lafitte, J.J., Van Seuningen, I., Delannoy, P.: IL-6 and IL-8 increase the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of sialylated and/or sulfated Lewisx epitopes in the human bronchial mucosa. Biochem. J. 410, 213–223 (2008). doi:10.1042/BJ20070958

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr Juan J. Garcia-Vallejo (VU Medical Center, Amsterdam, The Netherlands) for the gift of some oligonucleotides used for the qPCR analysis. We also thank Pr. R. Gerardy-Schahn (Medizinische Hochschule, Hannover, Germany) for the gift of the anti-PSA Ab.

This work was supported by the Institut National de la Santé et de la Recherche Médicale, the Pasteur Institute of Lille, the University of Lille 2, the Contrat de Plan Etat Région 2000–2006 (CPER)/FEDER (Fonds Européen de Développement Régional) and l’Agence Nationale de la Recherche (ANR) (program MIE grant R08066ES/RPV08036ESA). This work was also supported by Consortium for Functional Glycomics Grant GM-62116 from the National Institutes of Health. CP was recipient of a doctoral fellowship from the Conseil Régional Nord—Pas-de-Calais / INSERM. FT is supported by the Centre National de la Recherche Scientifique, CF and PG by the INSERM and SGD, MAKR and PD by the University of Lille 1.

Conflict of interest statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to François Trottein or Philippe Delannoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trottein, F., Schaffer, L., Ivanov, S. et al. Glycosyltransferase and sulfotransferase gene expression profiles in human monocytes, dendritic cells and macrophages. Glycoconj J 26, 1259–1274 (2009). https://doi.org/10.1007/s10719-009-9244-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9244-y

Keywords

Navigation