Glycoconjugate Journal

, 26:1259 | Cite as

Glycosyltransferase and sulfotransferase gene expression profiles in human monocytes, dendritic cells and macrophages

  • François Trottein
  • Lana Schaffer
  • Stoyan Ivanov
  • Christophe Paget
  • Catherine Vendeville
  • Aurélie Cazet
  • Sophie Groux-Degroote
  • Suzanna Lee
  • Marie-Ange Krzewinski-Recchi
  • Christelle Faveeuw
  • Steven R. Head
  • Philippe Gosset
  • Philippe Delannoy


Using a focused glycan-gene microarray, we compared the glycosyltransferase (GT) and sulfotransferase gene expression profiles of human monocytes, dendritic cells (DCs) and macrophages (Mϕs), isolated or differentiated from the same donors. Microarray analysis indicated that monocytes express transcripts for a full set of enzymes involved in the biosynthesis of multi-multiantennary branched N-glycans, potentially elongated by poly-N-acetyl-lactosamine chains, and of mucin-type Core 1 and Core 2 sialylated O-glycans. Monocytes also express genes involved in the biosynthesis and modification of glycosaminoglycans, but display a limited expression of GTs implicated in glycolipid synthesis. Among genes expressed in monocytes (90 out of 175), one third is significantly modulated in DCs and Mϕ respectively, most of them being increased in both cell types relative to monocytes. These changes might potentially enforce the capacity of differentiated cells to synthesize branched N-glycans and mucin-type O-glycans and to remodel cell surface proteoglycans. Stimulation of DCs and Mϕs with lipopolysaccharide caused a general decrease in gene expression, mainly affecting genes found to be positively modulated during the differentiation steps. Interestingly, although a similar set of enzymes are modulated in the same direction in mature DCs and Mϕs, cell specific genes are also differentially regulated during maturation, a phenomenon that may sustain functional specificities. Validation of this analysis was provided by quantitative real-time PCR and flow cytometry of cell surface glycan antigens. Collectively, this study implies an important modification of the pattern of glycosylation in DCs and Mϕs undergoing differentiation and maturation with potential biological consequences.


Dendritic cells Glycosyltransferases Monocytes Macrophages Microarray 



Antigen presenting cell


Dendritic cell









Toll-like receptor


Sialyl Lex






Polysialic acid


Heparan sulfate


Quantitative real-time PCR




Mean fluorescence intensity


Granulocyte Mϕ-colony stimulating factor



We acknowledge Dr Juan J. Garcia-Vallejo (VU Medical Center, Amsterdam, The Netherlands) for the gift of some oligonucleotides used for the qPCR analysis. We also thank Pr. R. Gerardy-Schahn (Medizinische Hochschule, Hannover, Germany) for the gift of the anti-PSA Ab.

This work was supported by the Institut National de la Santé et de la Recherche Médicale, the Pasteur Institute of Lille, the University of Lille 2, the Contrat de Plan Etat Région 2000–2006 (CPER)/FEDER (Fonds Européen de Développement Régional) and l’Agence Nationale de la Recherche (ANR) (program MIE grant R08066ES/RPV08036ESA). This work was also supported by Consortium for Functional Glycomics Grant GM-62116 from the National Institutes of Health. CP was recipient of a doctoral fellowship from the Conseil Régional Nord—Pas-de-Calais / INSERM. FT is supported by the Centre National de la Recherche Scientifique, CF and PG by the INSERM and SGD, MAKR and PD by the University of Lille 1.

Conflict of interest statement

None declared.


  1. 1.
    Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M., Dwek, R.A.: The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007). doi: 10.1146/annurev.immunol.25.022106.141702 CrossRefPubMedGoogle Scholar
  2. 2.
    Collins, B.E., Paulson, J.C.: Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Curr. Opin. Chem. Biol. 8, 617–625 (2004). doi: 10.1016/j.cbpa.2004.10.004 CrossRefPubMedGoogle Scholar
  3. 3.
    Daniels, M.A., Hogquist, K.A., Jameson, S.C.: Sweet ’n’ sour: the impact of differential glycosylation on T cell responses. Nat. Immunol. 3, 903–910 (2002). doi: 10.1038/ni1002-903 CrossRefPubMedGoogle Scholar
  4. 4.
    Marth, J.D., Grewal, P.K.: Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874–887 (2008). doi: 10.1038/nri2417 CrossRefPubMedGoogle Scholar
  5. 5.
    Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A., Dwek, R.A.: Glycosylation and the immune system. Science 291, 2370–2376 (2001). doi: 10.1126/science.291.5512.2370 CrossRefPubMedGoogle Scholar
  6. 6.
    Spiro, R.G.: Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R–56R (2002). doi: 10.1093/glycob/12.4.43R CrossRefPubMedGoogle Scholar
  7. 7.
    Crocker, P.R.: Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr. Opin. Struct. Biol. 12, 609–615 (2002). doi: 10.1016/S0959-440X(02)00375-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Esko, J.D., Selleck, S.B.: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002). doi: 10.1146/annurev.biochem.71.110601.135458 CrossRefPubMedGoogle Scholar
  9. 9.
    Lau, K.S., Partridge, E.A., Grigorian, A., Silvescu, C.I., Reinhold, V.N., Demetriou, M., Dennis, J.W.: Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129, 123–134 (2007). doi: 10.1016/j.cell.2007.01.049 CrossRefPubMedGoogle Scholar
  10. 10.
    Lowe, J.B.: Glycosyltransferases and glycan structures contributing to the adhesive activities of L-, E- and P-selectin counter-receptors. Biochem. Soc. Symp. 69, 33–45 (2002)PubMedGoogle Scholar
  11. 11.
    Moody, A.M., Chui, D., Reche, P.A., Priatel, J.J., Marth, J.D., Reinherz, E.L.: Developmentally regulated glycosylation of the CD8alphabeta coreceptor stalk modulates ligand binding. Cell 107, 501–512 (2001). doi: 10.1016/S0092-8674(01)00577-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Rabinovich, G.A., Baum, L.G., Tinari, N., Paganelli, R., Natoli, C., Liu, F.T., Iacobelli, S.: Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 23, 313–320 (2002). doi: 10.1016/S1471-4906(02)02232-9 CrossRefPubMedGoogle Scholar
  13. 13.
    Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Poirier, F., Riley, E.M., Baum, L.G., Rabinovich, G.A.: Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8, 825–834 (2007). doi: 10.1038/ni1482 CrossRefPubMedGoogle Scholar
  14. 14.
    Blander, J.M., Visintin, I., Janeway Jr., C.A., Medzhitov, R.: Alpha(1, 3)-fucosyltransferase VII and alpha(2, 3)-sialyltransferase IV are up-regulated in activated CD4 T cells and maintained after their differentiation into Th1 and migration into inflammatory sites. J. Immunol. 163, 3746–3752 (1999)PubMedGoogle Scholar
  15. 15.
    Collins, B.E., Blixt, O., Han, S., Duong, B., Li, H., Nathan, J.K., Bovin, N., Paulson, J.C.: High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. J. Immunol. 177, 2994–3003 (2006)PubMedGoogle Scholar
  16. 16.
    Feizi, T.: Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000). doi: 10.1034/j.1600-065X.2000.917310.x CrossRefPubMedGoogle Scholar
  17. 17.
    Moody, A.M., North, S.J., Reinhold, B., Van Dyken, S.J., Rogers, M.E., Panico, M., Dell, A., Morris, H.R., Marth, J.D., Reinherz, E.L.: Sialic acid capping of CD8beta core 1-O-glycans controls thymocyte-major histocompatibility complex class I interaction. J. Biol. Chem. 278, 7240–7246 (2003). doi: 10.1074/jbc.M210468200 CrossRefPubMedGoogle Scholar
  18. 18.
    Morgan, R., Gao, G., Pawling, J., Dennis, J.W., Demetriou, M., Li, B.: N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J. Immunol. 173, 7200–7208 (2004)PubMedGoogle Scholar
  19. 19.
    Pappu, B.P., Shrikant, P.A.: Alteration of cell surface sialylation regulates antigen-induced naive CD8+ T cell responses. J. Immunol. 173, 275–284 (2004)PubMedGoogle Scholar
  20. 20.
    van Kooyk, Y., Rabinovich, G.A.: Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601 (2008). doi: 10.1038/ni.f.203 CrossRefPubMedGoogle Scholar
  21. 21.
    Demetriou, M., Granovsky, M., Quaggin, S., Dennis, J.W.: Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001). doi: 10.1038/35055582 CrossRefPubMedGoogle Scholar
  22. 22.
    Moretta, L., Bottino, C., Pende, D., Castriconi, R., Mingari, M.C., Moretta, A.: Surface NK receptors and their ligands on tumor cells. Semin. Immunol. 18, 151–158 (2006). doi: 10.1016/j.smim.2006.03.002 CrossRefPubMedGoogle Scholar
  23. 23.
    Bendelac, A., Savage, P.B., Teyton, L.: The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007). doi: 10.1146/annurev.immunol.25.022106.141711 CrossRefPubMedGoogle Scholar
  24. 24.
    Godfrey, D.I., Kronenberg, M.: Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004)PubMedGoogle Scholar
  25. 25.
    Bax, M., Garcia-Vallejo, J.J., Jang-Lee, J., North, S.J., Gilmartin, T.J., Hernandez, G., Crocker, P.R., Leffler, H., Head, S.R., Haslam, S.M., Dell, A., van Kooyk, Y.: Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J. Immunol. 179, 8216–8224 (2007)PubMedGoogle Scholar
  26. 26.
    Julien, S., Grimshaw, M.J., Sutton-Smith, M., Coleman, J., Morris, H.R., Dell, A., Taylor-Papadimitriou, J., Burchell, J.M.: Sialyl-Lewis(x) on P-selectin glycoprotein ligand-1 is regulated during differentiation and maturation of dendritic cells: a mechanism involving the glycosyltransferases C2GnT1 and ST3Gal I. J. Immunol. 179, 5701–5710 (2007)PubMedGoogle Scholar
  27. 27.
    Gordon, S., Taylor, P.R.: Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005). doi: 10.1038/nri1733 CrossRefPubMedGoogle Scholar
  28. 28.
    Hume, D.A., Ross, I.L., Himes, S.R., Sasmono, R.T., Wells, C.A., Ravasi, T.: The mononuclear phagocyte system revisited. J. Leukoc. Biol. 72, 621–627 (2002)PubMedGoogle Scholar
  29. 29.
    Randolph, G.J., Beaulieu, S., Lebecque, S., Steinman, R.M., Muller, W.A.: Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282, 480–483 (1998). doi: 10.1126/science.282.5388.480 CrossRefPubMedGoogle Scholar
  30. 30.
    Randolph, G.J., Inaba, K., Robbiani, D.F., Steinman, R.M., Muller, W.A.: Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761 (1999). doi: 10.1016/S1074-7613(00)80149-1 CrossRefPubMedGoogle Scholar
  31. 31.
    Banchereau, J., Steinman, R.M.: Dendritic cells and the control of immunity. Nature 392, 245–252 (1998). doi: 10.1038/32588 CrossRefPubMedGoogle Scholar
  32. 32.
    Kapsenberg, M.L.: Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 3, 984–993 (2003). doi: 10.1038/nri1246 CrossRefPubMedGoogle Scholar
  33. 33.
    Reis e Sousa, C.: Dendritic cells in a mature age. Nat. Rev. Immunol. 6, 476–483 (2006). doi: 10.1038/nri1845 CrossRefGoogle Scholar
  34. 34.
    Rossi, M., Young, J.W.: Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J. Immunol. 175, 1373–1381 (2005)PubMedGoogle Scholar
  35. 35.
    Iwasaki, A., Medzhitov, R.: Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004). doi: 10.1038/ni1112 CrossRefPubMedGoogle Scholar
  36. 36.
    Takeda, K., Akira, S.: Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 (2005). doi: 10.1093/intimm/dxh186 CrossRefPubMedGoogle Scholar
  37. 37.
    Gosset, P., Bureau, F., Angeli, V., Pichavant, M., Faveeuw, C., Tonnel, A.B., Trottein, F.: Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. J. Immunol. 170, 4943–4952 (2003)PubMedGoogle Scholar
  38. 38.
    Sallusto, F., Lanzavecchia, A.: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–1118 (1994). doi: 10.1084/jem.179.4.1109 CrossRefPubMedGoogle Scholar
  39. 39.
    Young, D.A., Lowe, L.D., Clark, S.C.: Comparison of the effects of IL-3, granulocyte-macrophage colony-stimulating factor, and macrophage colony-stimulating factor in supporting monocyte differentiation in culture. Analysis of macrophage antibody-dependent cellular cytotoxicity. J. Immunol. 145, 607–615 (1990)PubMedGoogle Scholar
  40. 40.
    Turville, S.G., Cameron, P.U., Handley, A., Lin, G., Pohlmann, S., Doms, R.W., Cunningham, A.L.: Diversity of receptors binding HIV on dendritic cell subsets. Nat. Immunol. 3, 975–983 (2002). doi: 10.1038/ni841 CrossRefPubMedGoogle Scholar
  41. 41.
    van Kooyk, Y., Geijtenbeek, T.B.: DC-SIGN: escape mechanism for pathogens. Nat. Rev. Immunol. 3, 697–709 (2003). doi: 10.1038/nri1182 CrossRefPubMedGoogle Scholar
  42. 42.
    Fleetwood, A.J., Lawrence, T., Hamilton, J.A., Cook, A.D.: Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J. Immunol. 178, 5245–5252 (2007)PubMedGoogle Scholar
  43. 43.
    Verreck, F.A., de Boer, T., Langenberg, D.M., Hoeve, M.A., Kramer, M., Vaisberg, E., Kastelein, R., Kolk, A., de Waal-Malefyt, R., Ottenhoff, T.H.: Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco) bacteria. Proc. Natl. Acad. Sci. USA 101, 4560–4565 (2004). doi: 10.1073/pnas.0400983101 CrossRefPubMedGoogle Scholar
  44. 44.
    Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., Brown, E.L.: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680 (1996). doi: 10.1038/nbt1296-1675 CrossRefPubMedGoogle Scholar
  45. 45.
    Hess, A., Iyer, H.: Fisher’s combined p-value for detecting differentially expressed genes using Affymetrix expression arrays. BMC Genomics 8, 96 (2007). doi: 10.1186/1471-2164-8-96 CrossRefPubMedGoogle Scholar
  46. 46.
    Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P.: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003). doi: 10.1093/bioinformatics/19.2.185 CrossRefPubMedGoogle Scholar
  47. 47.
    Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., Speed, T.P.: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003). doi: 10.1093/nar/gng015 CrossRefPubMedGoogle Scholar
  48. 48.
    Elbim, C., Hakim, J., Gougerot-Pocidalo, M.A.: Heterogeneity in Lewis-X and sialyl-Lewis-X antigen expression on monocytes in whole blood: relation to stimulus-induced oxidative burst. Am. J. Pathol. 152, 1081–1090 (1998)PubMedGoogle Scholar
  49. 49.
    Skacel, P.O., Edwards, A.J., Harrison, C.T., Watkins, W.M.: Enzymic control of the expression of the X determinant (CD15) in human myeloid cells during maturation: the regulatory role of 6-sialytransferase. Blood 78, 1452–1460 (1991)PubMedGoogle Scholar
  50. 50.
    Becker, S., Warren, M.K., Haskill, S.: Colony-stimulating factor-induced monocyte survival and differentiation into macrophages in serum-free cultures. J. Immunol. 139, 3703–3709 (1987)PubMedGoogle Scholar
  51. 51.
    Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., Steinman, R.M.: Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992). doi: 10.1084/jem.176.6.1693 CrossRefPubMedGoogle Scholar
  52. 52.
    Sasaki, K., Kurata-Miura, K., Ujita, M., Angata, K., Nakagawa, S., Sekine, S., Nishi, T., Fukuda, M.: Expression cloning of cDNA encoding a human beta-1, 3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. Proc. Natl. Acad. Sci. USA 94, 14294–14299 (1997). doi: 10.1073/pnas.94.26.14294 CrossRefPubMedGoogle Scholar
  53. 53.
    Weinhold, B., Seidenfaden, R., Rockle, I., Muhlenhoff, M., Schertzinger, F., Conzelmann, S., Marth, J.D., Gerardy-Schahn, R., Hildebrandt, H.: Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J. Biol. Chem. 280, 42971–42977 (2005). doi: 10.1074/jbc.M511097200 CrossRefPubMedGoogle Scholar
  54. 54.
    Curreli, S., Arany, Z., Gerardy-Schahn, R., Mann, D., Stamatos, N.M.: Polysialylated neuropilin-2 is expressed on the surface of human dendritic cells and modulates dendritic cell-T lymphocyte interactions. J. Biol. Chem. 282, 30346–30356 (2007). doi: 10.1074/jbc.M702965200 CrossRefPubMedGoogle Scholar
  55. 55.
    Kitagawa, H., Shimakawa, H., Sugahara, K.: The tumor suppressor EXT-like gene EXTL2 encodes an alpha1, 4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem. 274, 13933–13937 (1999). doi: 10.1074/jbc.274.20.13933 CrossRefPubMedGoogle Scholar
  56. 56.
    Wegrowski, Y., Milard, A.L., Kotlarz, G., Toulmonde, E., Maquart, F.X., Bernard, J.: Cell surface proteoglycan expression during maturation of human monocytes-derived dendritic cells and macrophages. Clin. Exp. Immunol. 144, 485–493 (2006). doi: 10.1111/j.1365-2249.2006.03059.x CrossRefPubMedGoogle Scholar
  57. 57.
    Jenner, J., Kerst, G., Handgretinger, R., Muller, I.: Increased alpha2, 6-sialylation of surface proteins on tolerogenic, immature dendritic cells and regulatory T cells. Exp. Hematol. 34, 1212–1218 (2006). doi: 10.1016/j.exphem.2006.04.016 CrossRefPubMedGoogle Scholar
  58. 58.
    Martinez, F.O., Gordon, S., Locati, M., Mantovani, A.: Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177, 7303–7311 (2006)PubMedGoogle Scholar
  59. 59.
    Suzuki, A., Yamakawa, M., Tsukamoto, M.: The adhesion molecules, l-selectin and sialyl lewis x, relate to the formation of the follicular dendritic cell-lymphocyte cluster in the mantle zone. Immunol. Lett. 79, 181–187 (2001). doi: 10.1016/S0165-2478(01)00282-6 CrossRefPubMedGoogle Scholar
  60. 60.
    Crocker, P.R.: Siglecs in innate immunity. Curr. Opin. Pharmacol. 5, 431–437 (2005). doi: 10.1016/j.coph.2005.03.003 CrossRefPubMedGoogle Scholar
  61. 61.
    Campbell, B.J., Yu, L.G., Rhodes, J.M.: Altered glycosylation in inflammatory bowel disease: a possible role in cancer development. Glycoconj. J. 18, 851–858 (2001). doi: 10.1023/A:1022240107040 CrossRefPubMedGoogle Scholar
  62. 62.
    Coulouarn, C., Lefebvre, G., Derambure, C., Lequerre, T., Scotte, M., Francois, A., Cellier, D., Daveau, M., Salier, J.P.: Altered gene expression in acute systemic inflammation detected by complete coverage of the human liver transcriptome. Hepatology 39, 353–364 (2004). doi: 10.1002/hep.20052 CrossRefPubMedGoogle Scholar
  63. 63.
    Van Dijk, W., Brinkman-Van der Linden, E.C., Havenaar, E.C.: Occurrence and possible function of inflammation-induced expression of sialyl Lewis-x on acute-phase proteins. Adv. Exp. Med. Biol 435, 145–150 (1998)PubMedGoogle Scholar
  64. 64.
    Kim, B.T., Kitagawa, H., Tanaka, J., Tamura, J., Sugahara, K.: In vitro heparan sulfate polymerization: crucial roles of core protein moieties of primer substrates in addition to the EXT1-EXT2 interaction. J. Biol. Chem. 278, 41618–41623 (2003). doi: 10.1074/jbc.M304831200 CrossRefPubMedGoogle Scholar
  65. 65.
    Brigl, M., Bry, L., Kent, S.C., Gumperz, J.E., Brenner, M.B.: Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4, 1230–1237 (2003). doi: 10.1038/ni1002 CrossRefPubMedGoogle Scholar
  66. 66.
    De Libero, G., Moran, A.P., Gober, H.J., Rossy, E., Shamshiev, A., Chelnokova, O., Mazorra, Z., Vendetti, S., Sacchi, A., Prendergast, M.M., Sansano, S., Tonevitsky, A., Landmann, R., Mori, L.: Bacterial infections promote T cell recognition of self-glycolipids. Immunity 22, 763–772 (2005). doi: 10.1016/j.immuni.2005.04.013 CrossRefPubMedGoogle Scholar
  67. 67.
    Mattner, J., Debord, K.L., Ismail, N., Goff, R.D., Cantu 3rd, C., Zhou, D., Saint-Mezard, P., Wang, V., Gao, Y., Yin, N., Hoebe, K., Schneewind, O., Walker, D., Beutler, B., Teyton, L., Savage, P.B., Bendelac, A.: Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005). doi: 10.1038/nature03408 CrossRefPubMedGoogle Scholar
  68. 68.
    Paget, C., Mallevaey, T., Speak, A.O., Torres, D., Fontaine, J., Sheehan, K.C., Capron, M., Ryffel, B., Faveeuw, C., Leite de Moraes, M., Platt, F., Platt, F., Trottein, F., Trottein, F.: Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27, 597–609 (2007). doi: 10.1016/j.immuni.2007.08.017 CrossRefPubMedGoogle Scholar
  69. 69.
    Salio, M., Speak, A.O., Shepherd, D., Polzella, P., Illarionov, P.A., Veerapen, N., Besra, G.S., Platt, F.M., Cerundolo, V.: Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc. Natl. Acad. Sci. USA 104, 20490–20495 (2007). doi: 10.1073/pnas.0710145104 CrossRefPubMedGoogle Scholar
  70. 70.
    Tupin, E., Kinjo, Y., Kronenberg, M.: The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5, 405–417 (2007). doi: 10.1038/nrmicro1657 CrossRefPubMedGoogle Scholar
  71. 71.
    Garcia-Vallejo, J.J., Gringhuis, S.I., van Dijk, W., van Die, I.: Gene expression analysis of glycosylation-related genes by real-time polymerase chain reaction. Methods Mol. Biol. 347, 187–209 (2006)PubMedGoogle Scholar
  72. 72.
    Groux-Degroote, S., Krzewinski-Recchi, M.A., Cazet, A., Vincent, A., Lehoux, S., Lafitte, J.J., Van Seuningen, I., Delannoy, P.: IL-6 and IL-8 increase the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of sialylated and/or sulfated Lewisx epitopes in the human bronchial mucosa. Biochem. J. 410, 213–223 (2008). doi: 10.1042/BJ20070958 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • François Trottein
    • 1
    • 2
    • 3
  • Lana Schaffer
    • 4
  • Stoyan Ivanov
    • 1
    • 2
    • 3
  • Christophe Paget
    • 1
    • 2
    • 3
  • Catherine Vendeville
    • 1
    • 2
    • 3
  • Aurélie Cazet
    • 3
    • 5
  • Sophie Groux-Degroote
    • 3
    • 5
  • Suzanna Lee
    • 4
  • Marie-Ange Krzewinski-Recchi
    • 3
    • 5
  • Christelle Faveeuw
    • 1
    • 2
    • 3
  • Steven R. Head
    • 4
  • Philippe Gosset
    • 2
    • 3
    • 6
  • Philippe Delannoy
    • 3
    • 5
  1. 1.Inserm, U547LilleFrance
  2. 2.Institut Pasteur de LilleLilleFrance
  3. 3.Université Lille Nord de FranceLilleFrance
  4. 4.The SCRIPPS Research InstituteLa JollaUSA
  5. 5.UMR 8576CNRSVilleneuve d’AscqFrance
  6. 6.INSERM, U774LilleFrance

Personalised recommendations