Glycoconjugate Journal

, 26:1075 | Cite as

Spectroscopic and differential scanning calorimetric studies on the unfolding of Trichosanthes dioica seed lectin. Similar modes of thermal and chemical denaturation

  • M. Kavitha
  • Musti J. Swamy


Physico-chemical and unfolding studies have been carried out on Trichosanthes dioica seed lectin (TDSL). The lectin exhibited maximum activity between pH 7.0 and 10.0, which decreased steeply at lower pH. The hemagglutination activity of TDSL was unaffected in the temperature range 4–50°C, but decreased rapidly at higher temperatures. Differential scanning calorimetric studies indicate that thermal unfolding of TDSL is an irreversible process, which could be described by a three-state model. The calorimetric scan recorded at pH 7.0 consists of two transitions, occurring at around 338.6 K, and 342.8 K. In the presence of carbohydrate ligands both these transitions shifted to higher temperatures, suggesting that ligand binding stabilizes the native conformation of the protein. The unfolding temperature was highest at pH 5.0 indicating that TDSL is more stable at acidic pH. Gdn.HCl induced unfolding, monitored by following changes in the intrinsic fluorescence properties of the protein, was also observed to be a three-state process involving an intermediate. CD spectroscopy indicates that the secondary and tertiary structures of TDSL are rather similar at different pH values, indicating that the lectin structure remains essentially unchanged over a wide range of pH.


Agglutinin Carbohydrate binding protein Thermal unfolding Van’t Hoff enthalpy Calorimetric enthalpy Chemical denaturation 



Trichosanthes dioica seed lectin


Circular dichroism


Change in excess heat capacity


Differential scanning calorimetry




Guanidine hydrochloride


Change in calorimetric enthalpy


Change in van’t Hoff enthalpy






Transition temperature



This work was supported by a research grant from the Department of Biotechnology (India) to MJS. MK is supported by a Senior Research Fellowship from CSIR (India). The Central Instrumentation Laboratory, University of Hyderabad is gratefully acknowledged for the use of the Jasco J-810 CD spectropolarimeter. We acknowledge the University Grants Commission (India) for their support through the UPE and CAS programs, to the University of Hyderabad and School of Chemistry, respectively.


  1. 1.
    Sharon, N., Lis, H.: Lectins, p. 454pp. Kluwer Academic, Dordrecht, The Netherlands (2003)Google Scholar
  2. 2.
    Lis, H., Sharon, N.: Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 98, 637 (1998). doi: 10.1021/cr940413g CrossRefPubMedGoogle Scholar
  3. 3.
    Van Damme, E.J.M., Peumans, W.J., Barre, A., Rougé, P.: Plant lectins: A composite of several distinct families of structurally and evolutionarily related proteins with diverse biological roles. Crit. Rev. Plant Sci. 17, 575–692 (1998). doi: 10.1016/S0735-2689(98)00365-7 CrossRefGoogle Scholar
  4. 4.
    Sharon, N., Lis, H.: How proteins bind carbohydrates: Lessons from legume lectins. J. Agric. Food Chem. 50, 6586–6591 (2002). doi: 10.1021/jf020190s CrossRefPubMedGoogle Scholar
  5. 5.
    Sinha, S., Gupta, G., Vijayan, M., Surolia, A.: Subunit assembly of plant lectins. Curr. Opin. Struct. Biol. 17, 498–505 (2007). doi: 10.1016/ CrossRefPubMedGoogle Scholar
  6. 6.
    Loris, L., Hamelryck, T., Bouckaert, J., Wyns, L.: Legume lectin structure. Biochim. Biophys. Acta 1383, 9–36 (1998)PubMedGoogle Scholar
  7. 7.
    Brinda, K.V., Surolia, A., Vishveshwara, S.: Insights into the quaternary association of proteins through structure graphs: A case study of lectins. Biochem. J. 391, 1–15 (2005). doi: 10.1042/BJ20050434 CrossRefPubMedGoogle Scholar
  8. 8.
    Srinivas, V.R., Reddy, G.B., Ahmad, N., Swaminathan, C.P., Mitra, N., Surolia, A.: Legume lectin family, the ‘natural mutants of the quaternary state’, provide insights into the relationship between protein stability and oligomerization. Biochim. Biophys. Acta 1527, 102–111 (2001)PubMedGoogle Scholar
  9. 9.
    Reddy, G.B., Bharadwaj, S., Surolia, A.: Thermal stability and mode of oligomerization of the tetrameric peanut agglutinin: A differential scanning calorimetry study. Biochemistry 38, 4464–4470 (1999). doi: 10.1021/bi982828s CrossRefPubMedGoogle Scholar
  10. 10.
    Srinivas, V.R., Singha, N.C., Schwarz, F.P., Surolia, A.: Differential scanning calorimetric studies of the glycoprotein, winged bean acidic lectin, isolated from the seeds of Psophocarpus tetragonolobus. FEBS Lett. 425, 57–60 (1998). doi: 10.1016/S0014-5793(98)00197-5 CrossRefPubMedGoogle Scholar
  11. 11.
    Schwarz, F.P., Puri, K., Surolia, A.: Thermodynamics of the binding of galactopyranoside derivatives to the basic lectin from winged bean (Psophocarpus tetragonolobus). J. Biol. Chem. 266, 24344–24350 (1991)PubMedGoogle Scholar
  12. 12.
    Schwarz, F.P., Puri, K., Bhat, R.G., Surolia, A.: Thermodynamics of monosaccharide binding to concanavalin A, pea (Pisum sativum) lectin and lentil (Lens culinaris) lectin. J. Biol. Chem. 268, 7668–7677 (1993)PubMedGoogle Scholar
  13. 13.
    Komath, S.S., Kavitha, M., Swamy, M.J.: Beyond carbohydrate binding: New directions in plant lectin research. Org. Biomol. Chem. 4, 973–988 (2006). doi: 10.1039/b515446d CrossRefPubMedGoogle Scholar
  14. 14.
    Sultan, N.A.M., Swamy, M.J.: Energetics of carbohydrate binding to Momordica charantia lectin: An isothermal titration calorimetric study. Arch. Biochem. Biophys. 437, 115–125 (2005). doi: 10.1016/ CrossRefPubMedGoogle Scholar
  15. 15.
    Kenoth, R., Komath, S.S., Swamy, M.J.: Physicochemical and saccharide binding studies on the galactose-specific seed lectin from Trichosanthes cucumerina. Arch. Biochem. Biophys. 413, 131–138 (2003). doi: 10.1016/S0003-9861(03)00094-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Kenoth, R., Reddy, D.R., Maiya, B.G., Swamy, M.J.: Thermodynamic and kinetic analysis of porphyrin binding to Trichosanthes cucumerina seed lectin. Eur. J. Biochem. 268, 5541–5549 (2001). doi: 10.1046/j.1432-1033.2001.02491.x CrossRefPubMedGoogle Scholar
  17. 17.
    Komath, S.S., Kenoth, R., Swamy, M.J.: Thermodynamic analysis of saccharide binding to snake gourd (Trichosanthes anguina) seed lectin. Fluorescence and absorption spectroscopic studies. Eur. J. Biochem. 268, 111–119 (2001). doi: 10.1046/j.1432-1327.2001.01852.x CrossRefPubMedGoogle Scholar
  18. 18.
    Sultan, N.A.M., Kenoth, R., Swamy, M.J.: Purification, physicochemical characterization, saccharide specificity, and chemical modification of a Gal/GalNAc specific lectin from the seeds of Trichosanthes dioica. Arch. Biochem. Biophys. 432, 212–221 (2004). doi: 10.1016/ CrossRefPubMedGoogle Scholar
  19. 19.
    Sultan, N.A.M., Swamy, M.J.: Fluorescence quenching and time-resolved fluorescence studies on Trichosanthes dioica seed lectin. J. Photochem. Photobiol. B Biol. 80, 93–100 (2005). doi: 10.1016/j.jphotobiol.2005.03.003 CrossRefGoogle Scholar
  20. 20.
    Agashe, V.R., Udgaonkar, J.B.: Thermodynamics of denaturation of barstar: Evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride. Biochemistry 34, 3286–3299 (1995). doi: 10.1021/bi00010a019 CrossRefPubMedGoogle Scholar
  21. 21.
    Nicholson, E.M., Scholtz, J.M.: Conformational stability of the Escherichia coli HPr protein: Test of the linear extrapolation method and a thermodynamic characterization of cold denaturation. Biochemistry 35, 11369–11378 (1996). doi: 10.1021/bi960863y CrossRefPubMedGoogle Scholar
  22. 22.
    Johnson, C.R., Morin, P.E., Arrowsmith, C.H., Freire, E.: Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. Biochemistry 34, 5309–5316 (1995). doi: 10.1021/bi00016a002 CrossRefPubMedGoogle Scholar
  23. 23.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 480–485 (1970). doi: 10.1038/227680a0 CrossRefGoogle Scholar
  24. 24.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–273 (1951)PubMedGoogle Scholar
  25. 25.
    Manly, S.P., Matthews, K.S., Sturtevant, J.M.: Thermal denaturation of the core protein of lac Repressor. Biochemistry 24, 3842–3846 (1985). doi: 10.1021/bi00336a004 CrossRefPubMedGoogle Scholar
  26. 26.
    Hinz, H.J., Schwarz, F.P.: Measurement and analysis of results obtained on biological substances with differential scanning calorimetry. Pure Appl. Chem. 73, 745–759 (2001). doi: 10.1351/pac200173040745 CrossRefGoogle Scholar
  27. 27.
    Schellman, J.A.: Macromolecular binding. Biopolymers 14, 999–1018 (1975). doi: 10.1002/bip.1975.360140509 CrossRefGoogle Scholar
  28. 28.
    Fukada, H., Sturtevant, J.M., Quiocho, F.A.: Thermodynamics of the binding of L-arabinose and of D-galactose to the L-arabinose-binding protein of Escherichia coli. J. Biol. Chem. 258, 13163–13198 (1983)Google Scholar
  29. 29.
    Lackowicz, J.R.: Principles of fluorescence spectroscopy. Plenum, New York (1989)Google Scholar
  30. 30.
    Khan, F., Ahmad, A., Khan, M.I.: Chemical, thermal and pH-induced equilibrium unfolding studies of Fusarium solani lectin. IUBMB Life 59, 34–43 (2007). doi: 10.1080/15216540601178075 CrossRefPubMedGoogle Scholar
  31. 31.
    Krupakar, J., Swaminathan, C.P., Das, P.K., Surolia, A., Podder, S.K.: Calorimetric studies on the stability of the ribosome-inactivating protein abrin II: Effects of pH and ligand binding. Biochem. J. 338, 273–279 (1999). doi: 10.1042/0264-6021:3380273 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of ChemistryUniversity of HyderabadHyderabadIndia

Personalised recommendations