Advertisement

Glycoconjugate Journal

, Volume 26, Issue 4, pp 445–456 | Cite as

Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen–Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3

  • Nithya Srinivasan
  • Sanjay M. Bane
  • Shashikant D. Ahire
  • Arvind D. Ingle
  • Rajiv D. Kalraiya
Article

Abstract

Galectin-3 on vascular endothelium has been shown to facilitate lung specific metastasis. Metastatic variants of B16 melanoma were chosen to identify specific ligands that mediate lung colonization via galectin-3. Flow cytometry showed that, galectin-3 binding to cells correlates with surface expression of poly N-acetyllactosamine (polylacNAc) but not with other reported ligands, e.g. Thomsen-Friedenreich (T/Tn) antigen. Immobilized galectin-3 promoted adhesion of melanoma cells in a metastasis dependent manner. Moreover, adhesion and galectin-3 binding to cells were specifically inhibited with lactose. These properties together with lung metastasis were inhibited with N-glycosylation inhibitor Swainsonine (SW), whereas, O-glycosylation inhibitor Benzyl-α-N-acetylgalactosamine (BG) had no effect. BG treatment significantly increased expression of T/Tn antigen on low metastatic cells; however, had no effect on their metastatic potential. The studies very comprehensively demonstrate the importance of polylacNAc substitutions on N-oligosaccharides in galectin-3 mediated lung metastasis.

Keywords

Galectin-3 β1,6 branched N-oligosaccharides Poly N-acetyl lactosamine Adhesion Lung specific metastasis 

Notes

Acknowledgements

We thank Dr. Hakon Leffler, Lund’s University, Sweden, for the expression vector for rhGalectin-3 and National Centre for Cell Science, Pune for the melanoma cell lines. We acknowledge the help extended by Ms. Archana Upadhya for Western blots, Miss. Radhika Kamdar for Immunohistochemistry, Ms. Rekha Santani and Shamal Vetale for Flow Cytometry, Mrs. Sadhana Kannan for statistical analysis, Mr. Chavan, Pawar and Lokhande for technical help, Mr. Sawant and Shyam Chavan for the help in preparing illustrations. We acknowledge the financial assistance received from Department of Science and Technology, Government of India and Senior Research Fellowship to Miss. Nithya Srinivasan from Council for Scientific and Industrial Research, Government of India.

Supplementary material

10719_2008_9194_MOESM1_ESM.pdf (1.7 mb)
Supplemental Material (PDF 1.69 MB)

References

  1. 1.
    Gupta, G.P., Massague, J.: Cancer metastasis: building a framework. Cell 127, 679–695 (2006). doi: 10.1016/j.cell.2006.11.001 PubMedCrossRefGoogle Scholar
  2. 2.
    Fidler, I.J.: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003). doi: 10.1038/nrc1098 PubMedCrossRefGoogle Scholar
  3. 3.
    Nicolson, G.L.: Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7, 143–188 (1988). doi: 10.1007/BF00046483 PubMedCrossRefGoogle Scholar
  4. 4.
    Paget, S.: The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8, 98–101 (1989)Google Scholar
  5. 5.
    Ben-Baruch, A.: Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin. Exp. Metastasis 25, 345–356 (2008). doi: 10.1007/s10585-007-9097-3 PubMedCrossRefGoogle Scholar
  6. 6.
    Poste, G., Nicolson, G.L.: Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc. Natl. Acad. Sci. USA 77, 399–403 (1980). doi: 10.1073/pnas.77.1.399 PubMedCrossRefGoogle Scholar
  7. 7.
    McGary, E.C., Lev, D.C., Bar-Eli, M.: Cellular adhesion pathways and metastatic potential of human melanoma. Cancer Biol. Ther. 1, 459–465 (2002)PubMedGoogle Scholar
  8. 8.
    Cummings, R.D., Trowbridge, I.S., Kornfeld, S.: A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase. J. Biol. Chem. 257, 13421–13427 (1982)PubMedGoogle Scholar
  9. 9.
    Dennis, J.W., Granovsky, M., Warren, C.E.: Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta. 1473, 21–34 (1999)PubMedGoogle Scholar
  10. 10.
    Yamamoto, E., Ino, K., Miyoshi, E., Shibata, K., Takahashi, N., Kajiyama, H., Nawa, A., Nomura, S., Nagasaka, T., Kikkawa, F.: Expression of N-acetylglucosaminyltransferase V in endometrial cancer correlates with poor prognosis. Br. J. Cancer 97, 1538–1544 (2007). doi: 10.1038/sj.bjc.6604044 PubMedCrossRefGoogle Scholar
  11. 11.
    Yamamoto, H., Swoger, J., Greene, S., Saito, T., Hurh, J., Sweeley, C., Leestma, J., Mkrdichian, E., Cerullo, L., Nishikawa, A., Ihara, Y., Taniguchi, N., Moskal, J.R.: Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity. Cancer Res. 60, 134–142 (2000)PubMedGoogle Scholar
  12. 12.
    Humphries, M.J., Matsumoto, K., White, S.L., Olden, K.: Oligosaccharide modification by swainsonine treatment inhibits pulmonary colonization by B16-F10 murine melanoma cells. Proc. Natl. Acad. Sci. USA 83, 1752–1756 (1986). doi: 10.1073/pnas.83.6.1752 PubMedCrossRefGoogle Scholar
  13. 13.
    Dennis, J.W., Laferte, S., Waghorne, C., Breitman, M.L., Kerbel, R.S.: Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236, 582–585 (1987). doi: 10.1126/science.2953071 PubMedCrossRefGoogle Scholar
  14. 14.
    Yoshimura, M., Nishikawa, A., Ihara, Y., Taniguchi, S., Taniguchi, N.: Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc. Natl. Acad. Sci. USA 92, 8754–8758 (1995). doi: 10.1073/pnas.92.19.8754 PubMedCrossRefGoogle Scholar
  15. 15.
    Chakraborty, A.K., Pawelek, J., Ikeda, Y., Miyoshi, E., Kolesnikova, N., Funasaka, Y., Ichihashi, M., Taniguchi, N.: Fusion hybrids with macrophage and melanoma cells up-regulate N-acetylglucosaminyltransferase V, beta1-6 branching, and metastasis. Cell Growth Differ. 12, 623–630 (2001)PubMedGoogle Scholar
  16. 16.
    Guo, H.B., Randolph, M., Pierce, M.: Inhibition of a specific N-glycosylation activity results in attenuation of breast carcinoma cell invasiveness-related phenotypes: inhibition of epidermal growth factor-induced dephosphorylation of focal adhesion kinase. J. Biol. Chem. 282, 22150–22162 (2007). doi: 10.1074/jbc.M611518200 PubMedCrossRefGoogle Scholar
  17. 17.
    Reddy, B.V., Kalraiya, R.D.: Sialilated beta1,6 branched N-oligosaccharides modulate adhesion, chemotaxis and motility of melanoma cells: effect on invasion and spontaneous metastasis properties. Biochim. Biophys. Acta. 1760, 1393–1402 (2006)PubMedGoogle Scholar
  18. 18.
    Tomiie, M., Isaka, S., Miyoshi, E., Taniguchi, N., Kimura, T., Ogita, K., Tsutsui, T., Shimoya, K., Nakagawa, T., Kondo, A., Koyama, M., Murata, Y.: Elevated expression of N-acetylglucosaminyltransferase V in first trimester human placenta. Biochem. Biophys. Res. Commun. 330, 999–1004 (2005). doi: 10.1016/j.bbrc.2005.02.186 PubMedCrossRefGoogle Scholar
  19. 19.
    Seberger, P.J., Chaney, W.G.: Control of metastasis by Asn-linked, beta1-6 branched oligosaccharides in mouse mammary cancer cells. Glycobiology 9, 235–241 (1999). doi: 10.1093/glycob/9.3.235 PubMedCrossRefGoogle Scholar
  20. 20.
    Gassmann, P., Haier, J.: The tumor cell-host organ interface in the early onset of metastatic organ colonisation. Clin. Exp. Metastasis 25, 171–181 (2008). doi: 10.1007/s10585-007-9130-6 PubMedCrossRefGoogle Scholar
  21. 21.
    Bellis, S.L.: Variant glycosylation: an underappreciated regulatory mechanism for beta1 integrins. Biochim. Biophys. Acta. 1663, 52–60 (2004). doi: 10.1016/j.bbamem.2004.03.012 PubMedCrossRefGoogle Scholar
  22. 22.
    Lau, K.S., Partridge, E.A., Grigorian, A., Silvescu, C.I., Reinhold, V.N., Demetriou, M., Dennis, J.W.: Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129, 123–134 (2007). doi: 10.1016/j.cell.2007.01.049 PubMedCrossRefGoogle Scholar
  23. 23.
    Przybylo, M., Martuszewska, D., Pochec, E., Hoja-Lukowicz, D., Litynska, A.: Identification of proteins bearing beta1-6 branched N-glycans in human melanoma cell lines from different progression stages by tandem mass spectrometry analysis. Biochim. Biophys. Acta. 1770, 1427–1435 (2007)PubMedGoogle Scholar
  24. 24.
    Hakomori, S.: Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 56, 5309–5318 (1996)PubMedGoogle Scholar
  25. 25.
    van den Eijnden, D.H., Koenderman, A.H., Schiphorst, W.E.: Biosynthesis of blood group i-active polylactosaminoglycans. Partial purification and properties of an UDP-GlcNAc:N-acetyllactosaminide beta 1—-3-N-acetylglucosaminyltransferase from Novikoff tumor cell ascites fluid. J. Biol. Chem. 263, 12461–12471 (1988)PubMedGoogle Scholar
  26. 26.
    Fukuda, M., Hiraoka, N., Yeh, J.C.: C-type lectins and sialyl Lewis X oligosaccharides. Versatile roles in cell-cell interaction. J. Cell Biol. 147, 467–470 (1999). doi: 10.1083/jcb.147.3.467 PubMedCrossRefGoogle Scholar
  27. 27.
    Fidler, I.J., Nicolson, G.L.: Fate of recirculating B16 melanoma metastatic variant cells in parabiotic syngeneic recipients. J. Natl. Cancer Inst. 58, 1867–1872 (1977)PubMedGoogle Scholar
  28. 28.
    Hart, I.R., Fidler, I.J.: Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 40, 2281–2287 (1980)PubMedGoogle Scholar
  29. 29.
    Krishnan, V., Bane, S.M., Kawle, P.D., Naresh, K.N., Kalraiya, R.D.: Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clin. Exp. Metastasis 22, 11–24 (2005). doi: 10.1007/s10585-005-2036-2 PubMedCrossRefGoogle Scholar
  30. 30.
    Leffler, H., Barondes, S.H.: Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian beta-galactosides. J. Biol. Chem. 261, 10119–10126 (1986)PubMedGoogle Scholar
  31. 31.
    Ujita, M., McAuliffe, J., Hindsgaul, O., Sasaki, K., Fukuda, M.N., Fukuda, M.: Poly-N-acetyllactosamine synthesis in branched N-glycans is controlled by complemental branch specificity of I-extension enzyme and beta1,4-galactosyltransferase I. J. Biol. Chem. 274, 16717–16726 (1999). doi: 10.1074/jbc.274.24.16717 PubMedCrossRefGoogle Scholar
  32. 32.
    Liu, F.T., Rabinovich, G.A.: Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29–41 (2005). doi: 10.1038/nrc1527 PubMedCrossRefGoogle Scholar
  33. 33.
    Glinsky, V.V., Glinsky, G.V., Rittenhouse-Olson, K., Huflejt, M.E., Glinskii, O.V., Deutscher, S.L., Quinn, T.P.: The role of Thomsen–Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res. 61, 4851–4857 (2001)PubMedGoogle Scholar
  34. 34.
    Yu, L.G.: The oncofetal Thomsen–Friedenreich carbohydrate antigen in cancer progression. Glycoconj. J. 24, 411–420 (2007). doi: 10.1007/s10719-007-9034-3 PubMedCrossRefGoogle Scholar
  35. 35.
    Bayer, E.A., Wilchek, M.: Protein biotinylation. Methods Enzymol. 184, 138–160 (1990). doi: 10.1016/0076-6879(90)84268-L PubMedCrossRefGoogle Scholar
  36. 36.
    Massa, S.M., Cooper, D.N., Leffler, H., Barondes, S.H.: L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity. Biochemistry 32, 260–267 (1993). doi: 10.1021/bi00052a033 PubMedCrossRefGoogle Scholar
  37. 37.
    Dunbar, B.S., Schwoebel, E.D.: Preparation of polyclonal antibodies. Methods Enzymol. 182, 663–670 (1990). doi: 10.1016/0076-6879(90)82051-3 PubMedCrossRefGoogle Scholar
  38. 38.
    Peterson, G.L.: A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346–356 (1977). doi: 10.1016/0003-2697(77)90043-4 PubMedCrossRefGoogle Scholar
  39. 39.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970). doi: 10.1038/227680a0 PubMedCrossRefGoogle Scholar
  40. 40.
    Towbin, H., Staehelin, T., Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354 (1979). doi: 10.1073/pnas.76.9.4350 PubMedCrossRefGoogle Scholar
  41. 41.
    Inohara, H., Raz, A.: Functional evidence that cell surface galectin-3 mediates homotypic cell adhesion. Cancer Res. 55, 3267–3271 (1995)PubMedGoogle Scholar
  42. 42.
    Glinskii, O.V., Huxley, V.H., Glinsky, G.V., Pienta, K.J., Raz, A., Glinsky, V.V.: Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7, 522–527 (2005). doi: 10.1593/neo.04646 PubMedCrossRefGoogle Scholar
  43. 43.
    Stowell, S.R., Arthur, C.M., Mehta, P., Slanina, K.A., Blixt, O., Leffler, H., Smith, D.F., Cummings, R.D.: Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283, 10109–10123 (2008). doi: 10.1074/jbc.M709545200 PubMedCrossRefGoogle Scholar
  44. 44.
    Bresalier, R.S., Niv, Y., Byrd, J.C., Duh, Q.Y., Toribara, N.W., Rockwell, R.W., Dahiya, R., Kim, Y.S.: Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis. J. Clin. Invest. 87, 1037–1045 (1991). doi: 10.1172/JCI115063 PubMedCrossRefGoogle Scholar
  45. 45.
    Nakano, T., Matsui, T., Ota, T.: Benzyl-alpha-GalNAc inhibits sialylation of O-glycosidic sugar chains on CD44 and enhances experimental metastatic capacity in B16BL6 melanoma cells. Anticancer Res. 16, 3577–3584 (1996)PubMedGoogle Scholar
  46. 46.
    Glinsky, V.V., Glinsky, G.V., Glinskii, O.V., Huxley, V.H., Turk, J.R., Mossine, V.V., Deutscher, S.L., Pienta, K.J., Quinn, T.P.: Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res. 63, 3805–3811 (2003)PubMedGoogle Scholar
  47. 47.
    Sparrow, C.P., Leffler, H., Barondes, S.H.: Multiple soluble beta-galactoside-binding lectins from human lung. J. Biol. Chem. 262, 7383–7390 (1987)PubMedGoogle Scholar
  48. 48.
    Lotan, R., Belloni, P.N., Tressler, R.J., Lotan, D., Xu, X.C., Nicolson, G.L.: Expression of galectins on microvessel endothelial cells and their involvement in tumour cell adhesion. Glycoconj. J. 11, 462–468 (1994). doi: 10.1007/BF00731282 PubMedCrossRefGoogle Scholar
  49. 49.
    Farnworth, S.L., Henderson, N.C., Mackinnon, A.C., Atkinson, K.M., Wilkinson, T., Dhaliwal, K., Hayashi, K., Simpson, A.J., Rossi, A.G., Haslett, C., Sethi, T.: Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am. J. Pathol. 172, 395–405 (2008). doi: 10.2353/ajpath.2008.070870 PubMedCrossRefGoogle Scholar
  50. 50.
    Nishi, Y., Sano, H., Kawashima, T., Okada, T., Kuroda, T., Kikkawa, K., Kawashima, S., Tanabe, M., Goto, T., Matsuzawa, Y., Matsumura, R., Tomioka, H., Liu, F.T., Shirai, K.: Role of galectin-3 in human pulmonary fibrosis. Allergol. Int. 56, 57–65 (2007). doi: 10.2332/allergolint.O-06-449 PubMedCrossRefGoogle Scholar
  51. 51.
    Lopez, E., del Pozo, V., Miguel, T., Sastre, B., Seoane, C., Civantos, E., Llanes, E., Baeza, M.L., Palomino, P., Cardaba, B., Gallardo, S., Manzarbeitia, F., Zubeldia, J.M., Lahoz, C.: Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. J. Immunol. 176, 1943–1950 (2006)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nithya Srinivasan
    • 1
  • Sanjay M. Bane
    • 1
  • Shashikant D. Ahire
    • 1
  • Arvind D. Ingle
    • 1
  • Rajiv D. Kalraiya
    • 1
  1. 1.Advanced Centre for Treatment Research and Education in Cancer (ACTREC)Tata Memorial CentreNavi MumbaiIndia

Personalised recommendations