Glycoconjugate Journal

, Volume 26, Issue 4, pp 423–432 | Cite as

Functional characterization of an eosinophil-specific galectin, ovine galectin-14

  • Anna R. Young
  • Garry J. Barcham
  • Joanna M. Kemp
  • Jillian L. Dunphy
  • Andrew Nash
  • Els N. Meeusen


Across mammalian species, human galectin-10 and ovine galectin-14 are unique in their expression in eosinophils and their release into lung and gastrointestinal tissues following allergen or parasite challenge. Recombinant galectin-14 is active in carbohydrate binding assays and has been used in this study to unravel the function of this major eosinophil constituent. In vitro cultures revealed that galectin-14 is spontaneously released by eosinophils isolated from allergen-stimulated mammary gland lavage, but not by resting peripheral blood eosinophils. Galectin-14 secretion from peripheral blood eosinophils can be induced by the same stimuli that induce eosinophil degranulation. Flow cytometric analysis showed that recombinant galectin-14 can bind in vitro to eosinophils, neutrophils and activated lymphocytes. Glycan array screening indicated that galectin-14 recognizes terminal N-acetyllactosamine residues which can be modified with α1-2-fucosylation and, uniquely for a galectin, prefers α2- over α2-sialylation. Galectin-14 showed the greatest affinity for lacto-N-neotetraose, an immunomodulatory oligosaccharide expressed by helminths. Galectin-14 binds specifically to laminin in vitro, and to mucus and mucus producing cells on lung and intestinal tissue sections. In vivo, galectin-14 is abundantly present in mucus scrapings collected from either lungs or gastrointestinal tract following allergen or parasite challenge, respectively. These results suggest that in vivo secretion of eosinophil galectins may be specifically induced at epithelial surfaces after recruitment of eosinophils by allergic stimuli, and that eosinophil galectins may be involved in promoting adhesion and changing mucus properties during parasite infection and allergies.


Galectin Eosinophil Mucus Glycan array Allergy Helminth 



We wish to acknowledge the Consortium for Functional Glycomics Grant number GM62116 for performing the glycan array screening. This work was supported by grants from the Australian Research Council.


  1. 1.
    Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., Poirier, F.: Introduction to galectins. Glycoconj. J. 19, 433–440 (2004). doi: 10.1023/B:GLYC.0000014072.34840.04 PubMedCrossRefGoogle Scholar
  2. 2.
    Rabinovich, G.A., Liu, F.T., Hirashima, M., Anderson, A.: An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand. J. Immunol. 66, 143–158 (2007). doi: 10.1111/j.1365-3083.2007.01986.x PubMedCrossRefGoogle Scholar
  3. 3.
    Young, A.R., Meeusen, E.N.: Galectins in parasite infection and allergic inflammation. Glycoconj. J. 19, 601–606 (2004). doi: 10.1023/B:GLYC.0000014091.00844.0a PubMedCrossRefGoogle Scholar
  4. 4.
    Zick, Y., Eisenstein, M., Goren, R.A., Hadari, Y.R., Levy, Y., Ronen, D.: Role of galectin-8 as a modulator of cell adhesion and cell growth. Glycoconj. J. 19, 517–526 (2004). doi: 10.1023/ PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper, D.N.: Galectinomics: finding themes in complexity. Biochim. Biophys. Acta 1572, 209–231 (2002)PubMedGoogle Scholar
  6. 6.
    Houzelstein, D., Goncalves, I.R., Fadden, A.J., Sidhu, S.S., Cooper, D.N., Drickamer, K., et al.: Phylogenetic analysis of the vertebrate galectin family. Mol. Biol. Evol. 21, 1177–1187 (2004). doi: 10.1093/molbev/msh082 PubMedCrossRefGoogle Scholar
  7. 7.
    Kaltner, H., Solis, D., Kopitz, J., Lensch, M., Lohr, M., Manning, J.C., et al.: Prototype chicken galectins revisited: characterization of a third protein with distinctive hydrodynamic behaviour and expression pattern in organs of adult animals. Biochem. J. 409, 591–599 (2008). doi: 10.1042/BJ20070419 PubMedCrossRefGoogle Scholar
  8. 8.
    Dunphy, J.L., Barcham, G.J., Bischof, R.J., Young, A.R., Nash, A., Meeusen, E.N.: Isolation and characterization of a novel eosinophil-specific galectin released into the lungs in response to allergen challenge. J. Biol. Chem. 277, 14916–14924 (2002). doi: 10.1074/jbc.M200214200 PubMedCrossRefGoogle Scholar
  9. 9.
    Ackerman, S.J., Corrette, S.E., Rosenberg, H.F., Bennett, J.C., Mastrianni, D.M., Nicholson-Weller, A., et al.: Molecular cloning and characterization of human eosinophil Charcot–Leyden crystal protein (lysophospholipase). Similarities to IgE binding proteins and the S-type animal lectin superfamily. J. Immunol. 150, 456–468 (1993)PubMedGoogle Scholar
  10. 10.
    Ackerman, S.J., Liu, L., Kwatia, M.A., Savage, M.P., Leonidas, D.D., Swaminathan, G.J., et al.: Charcot-Leyden crystal protein (galectin-10) is not a dual function galectin with lysophospholipase activity but binds a lysophospholipase inhibitor in a novel structural fashion. J. Biol. Chem. 277, 14859–14868 (2002). doi: 10.1074/jbc.M200221200 PubMedCrossRefGoogle Scholar
  11. 11.
    Dyer, K.D., Handen, J.S., Rosenberg, H.F.: The genomic structure of the human Charcot-Leyden crystal protein gene is analogous to those of the galectin genes. Genomics 40, 217–221 (1997). doi: 10.1006/geno.1996.4590 PubMedCrossRefGoogle Scholar
  12. 12.
    van Die, I., Cummings, R.D.: Glycans modulate immune responses in helminth infections and allergy. Chem. Immunol. Allergy 90, 91–112 (2006)PubMedCrossRefGoogle Scholar
  13. 13.
    Gleich, G.J., Adolphson, C.R., Leiferman, K.M.: The biology of the eosinophilic leukocyte. Annu. Rev. Med. 44, 85–101 (1993). doi: 10.1146/ PubMedCrossRefGoogle Scholar
  14. 14.
    Kepley, C., Craig, S., Schwartz, L.: Purification of human basophils by density and size alone. J. Immunol. Methods 175, 1–9 (1994). doi: 10.1016/0022-1759(94)90326-3 PubMedCrossRefGoogle Scholar
  15. 15.
    Woldehiwet, Z., Scaife, H., Hart, C.A., Edwards, S.W.: Purification of ovine neutrophils and eosinophils: Anaplasma phagocytophilum affects neutrophil density. J. Comp. Pathol. 128, 277–282 (2003). doi: 10.1053/jcpa.2002.0633 PubMedCrossRefGoogle Scholar
  16. 16.
    Bischof, R.J., Meeusen, E.N.: Cellular kinetics of an allergic-type response in a sheep mammary gland model of inflammation. Clin. Exp. Allergy 32, 619–626 (2002). doi: 10.1046/j.0954-7894.2002.01345.x PubMedCrossRefGoogle Scholar
  17. 17.
    Rainbird, M.A., MacMillan, D., Meeusen, E.N.T.: Eosinophil-mediated killing of Haemonchus contortus larvae: effect of eosinophil activation and role of antibody, complement and interleukin-5. Parasite Immunol. 20, 93–103 (1998)PubMedGoogle Scholar
  18. 18.
    Rabilloud, T.: A comparison between low background silver diammine and silver nitrate protein stains. Electrophoresis 13, 429–439 (1992). doi: 10.1002/elps.1150130190 PubMedCrossRefGoogle Scholar
  19. 19.
    Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M.E., Alvarez, R., et al.: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U.S.A. 101, 17033–17038 (2004). doi: 10.1073/pnas.0407902101 PubMedCrossRefGoogle Scholar
  20. 20.
    Mazurek, N., Conklin, J., Byrd, J.C., Raz, A., Bresalier, R.S.: Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. J. Biol. Chem. 275, 36311–36315 (2000). doi: 10.1074/jbc.M003831200 PubMedCrossRefGoogle Scholar
  21. 21.
    Snibson, K.J., Bischof, R.J., Slocombe, R.F., Meeusen, E.N.: Airway remodelling and inflammation in sheep lungs after chronic airway challenge with house dust mite. Clin. Exp. Allergy 35, 146–152 (2005). doi: 10.1111/j.1365-2222.2005.02137.x PubMedCrossRefGoogle Scholar
  22. 22.
    Wang, J., Young, I.G.: Eosinophilic inflammation: mechanisms regulating IL-5 transcription in human T lymphocytes. Allergy 62, 1131–1138 (2007). doi: 10.1111/j.1398-9995.2007.01510.x PubMedCrossRefGoogle Scholar
  23. 23.
    Huntley, J.F., van den Broek, A., Machell, J., Mackellar, A., Pettit, D., Meikle, L., et al.: The effect of immunosuppression with cyclosporin A on the development of sheep scab. Vet. Parasitol. 127, 323–332 (2005). doi: 10.1016/j.vetpar.2004.10.021 PubMedCrossRefGoogle Scholar
  24. 24.
    Liu, F.T.: Regulatory roles of galectins in the immune response. Int. Arch. Allergy Immunol. 136, 385–400 (2005). doi: 10.1159/000084545 PubMedCrossRefGoogle Scholar
  25. 25.
    Fukuda, T., Ackerman, S.J., Reed, C.E., Peters, M.S., Dunnette, S.L., Gleich, G.J.: Calcium ionophore A23187 calcium-dependent cytolytic degranulation in human eosinophils. J. Immunol. 135, 1349–1356 (1985)PubMedGoogle Scholar
  26. 26.
    Stowell, S.R., Qian, Y., Karmakar, S., Koyama, N.S., Dias-Baruffi, M., Leffler, H., et al.: Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J. Immunol. 180, 3091–3102 (2008)PubMedGoogle Scholar
  27. 27.
    Stowell, S.R., Arthur, C.M., Mehta, P., Slanina, K.A., Blixt, O., Leffler, H., et al.: Galectin-1,-2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283, 10109–10123 (2008). doi: 10.1074/jbc.M709545200 PubMedCrossRefGoogle Scholar
  28. 28.
    Terrazas, L.I., Walsh, K.L., Piskorska, D., McGuire, E., Harn Jr., D.A.: The schistosome oligosaccharide lacto-N-neotetraose expands Gr1(+) cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4(+) cells: a potential mechanism for immune polarization in helminth infections. J. Immunol. 167, 5294–5303 (2001)PubMedGoogle Scholar
  29. 29.
    Arumugham, R.G., Hsieh, T.C., Tanzer, M.L., Laine, R.A.: Structures of the asparagine-linked sugar chains of laminin. Biochim. Biophys. Acta 883, 112–126 (1986)PubMedGoogle Scholar
  30. 30.
    Rabinovich, G.A., Baum, L.G., Tinari, N., Paganelli, R., Natoli, C., Liu, F.T., et al.: Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 23, 313–320 (2002). doi: 10.1016/S1471-4906(02)02232-9 PubMedCrossRefGoogle Scholar
  31. 31.
    Chiariotti, L., Salvatore, P., Frunzio, R., Bruni, C.B.: Galectin genes: regulation of expression. Glycoconj. J. 19, 441–449 (2004). doi: 10.1023/B:GLYC.0000014073.23096.3a PubMedCrossRefGoogle Scholar
  32. 32.
    Wasano, K., Hirakawa, Y.: Recombinant galectin-1 recognizes mucin and epithelial cell surface glycocalyces of gastrointestinal tract. J. Histochem. Cytochem. 45, 275–283 (1997)PubMedGoogle Scholar
  33. 33.
    de Veer, M.J., Kemp, J.M., Meeusen, E.N.: The innate host defence against nematode parasites. Parasite Immunol. 29, 1–9 (2007). doi: 10.1111/j.1365-3024.2006.00910.x PubMedCrossRefGoogle Scholar
  34. 34.
    Hays, S.R., Fahy, J.V.: The role of mucus in fatal asthma. Am. J. Med. 115, 68–69 (2003). doi: 10.1016/S0002-9343(03)00260-2 PubMedCrossRefGoogle Scholar
  35. 35.
    Sutherland, E.R., Martin, R.J.: Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma. J. Allergy Clin. Immunol. 112, 819–827 (2003) (quiz 828)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anna R. Young
    • 1
  • Garry J. Barcham
    • 2
  • Joanna M. Kemp
    • 1
  • Jillian L. Dunphy
    • 4
  • Andrew Nash
    • 3
  • Els N. Meeusen
    • 1
  1. 1.Department of Physiology, School of Biomedical SciencesMonash UniversityClaytonAustralia
  2. 2.Centre for Animal Biotechnology, School of Veterinary ScienceThe University of MelbourneVictoriaAustralia
  3. 3.CSL Ltd45 Poplar RoadParkvilleAustralia
  4. 4.School of Community HealthCharles Sturt UniversityAlburyAustralia

Personalised recommendations