Glycoconjugate Journal

, Volume 26, Issue 3, pp 335–347 | Cite as

Complex N-glycans or core 1-derived O-glycans are not required for the expression of stage-specific antigens SSEA-1, SSEA-3, SSEA-4, or LeY in the preimplantation mouse embryo

  • Suzannah A. Williams
  • Pamela Stanley


The glycan epitopes termed stage-specific embryonic antigens (SSEA) occur on glycoproteins and glycolipids in mammals. However, it is not known whether these epitopes are attached to N- or O-glycans on glycoproteins and/or on glycolipids in the developing mouse embryo. In this paper the expression of the antigens SSEA-1, SSEA-3, SSEA-4 and LeY was examined on ovulated eggs, early embryos and blastocysts lacking either complex and hybrid N-glycans or core-1 derived O-glycans. In all cases, antigen expression determined by fluorescence microscopy of bound monoclonal antibodies to embryos at the stage of development of maximal expression was similar in mutant and control embryos. Thus, none of these developmental antigens are expressed solely on either complex N- or core 1-derived O-glycans attached to glycoproteins in the preimplantation mouse embryo. Furthermore, neither of these classes of glycan is essential for the expression of SSEA-1, SSEA-3, SSEA-4 or LeY on mouse embryos.


N-glycans O-glycans Mgat1 T-synthase Preimplantation mouse embryos SSEA Immunofluorescence microscopy 



stage-specific embryonic antigen


Lewis X


Lewis Y


leukoagglutinin from P. vulgaris


peanut agglutinin


monoclonal antibody


fluorescein isothiocyanate


tetramethylrhodamine isothiocyanate



We thank Wen Dong for excellent technical assistance and Dr. Jason Aglipay for help with some experiments. This work was supported by grant RO1 30645 from the National Institutes of Health to P. S. and received partial support from the Albert Einstein Cancer Center grant PO1 13330.


  1. 1.
    Solter, D., Knowles, B.B.: Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. U. S. A. 75, 5565–5569 (1978). doi: 10.1073/pnas.75.11.5565 PubMedCrossRefGoogle Scholar
  2. 2.
    Solter, D., Knowles, B.B.: Developmental stage-specific antigens during mouse embryogenesis. Curr. Top. Dev. Biol. 13, 139–165 (1979). doi: 10.1016/S0070-2153(08)60693-6 PubMedCrossRefGoogle Scholar
  3. 3.
    Pennington, J.E., Rastan, S., Roelcke, D., Feizi, T.: Saccharide structures of the mouse embryo during the first eight days of development. Inferences from immunocytochemical studies using monoclonal antibodies in conjunction with glycosidases. J. Embryol. Exp. Morphol. 90, 335–361 (1985)PubMedGoogle Scholar
  4. 4.
    Muramatsu, T.: Developmentally regulated expression of cell surface carbohydrates during mouse embryogenesis. J. Cell. Biochem. 36, 1–14 (1988). doi: 10.1002/jcb.240360102 PubMedCrossRefGoogle Scholar
  5. 5.
    Muramatsu, T., Muramatsu, H.: Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj. J. 21, 41–45 (2004). doi: 10.1023/B:GLYC.0000043746.77504.28 PubMedCrossRefGoogle Scholar
  6. 6.
    Fenderson, B.A., O’Brien, D.A., Millette, C.F., Eddy, E.M.: Stage-specific expression of three cell surface carbohydrate antigens during murine spermatogenesis detected with monoclonal antibodies. Dev. Biol. 103, 117–128 (1984). doi: 10.1016/0012-1606(84)90013-7 PubMedCrossRefGoogle Scholar
  7. 7.
    Brown, D.G., Warren, V.N., Pahlsson, P., Kimber, S.J.: Carbohydrate antigen expression in murine embryonic stem cells and embryos. I. Lacto and neo-lacto determinants. Histochem. J. 25, 452–463 (1993). doi: 10.1007/BF00157810 PubMedCrossRefGoogle Scholar
  8. 8.
    Gooi, H.C., Feizi, T., Kapadia, A., Knowles, B.B., Solter, D., Evans, M.J.: Stage-specific embryonic antigen involves alpha 1 goes to 3 fucosylated type 2 blood group chains. Nature 292, 156–158 (1981). doi: 10.1038/292156a0 PubMedCrossRefGoogle Scholar
  9. 9.
    Hakomori, S., Nudelman, E., Levery, S., Solter, D., Knowles, B.B.: The hapten structure of a developmentally regulated glycolipid antigen (SSEA-1) isolated from human erythrocytes and adenocarcinoma: a preliminary note. Biochem. Biophys. Res. Commun. 100, 1578–1586 (1981). doi: 10.1016/0006-291X(81)90699-9 PubMedCrossRefGoogle Scholar
  10. 10.
    Fenderson, B.A., Zehavi, U., Hakomori, S.: A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective. J. Exp. Med. 160, 1591–1596 (1984). doi: 10.1084/jem.160.5.1591 PubMedCrossRefGoogle Scholar
  11. 11.
    Bird, J.M., Kimber, S.J.: Oligosaccharides containing fucose linked alpha(1-3) and alpha(1-4) to N-acetylglucosamine cause decompaction of mouse morulae. Dev. Biol. 104, 449–460 (1984). doi: 10.1016/0012-1606(84)90101-5 PubMedCrossRefGoogle Scholar
  12. 12.
    Kudo, T., Kaneko, M., Iwasaki, H., Togayachi, A., Nishihara, S., Abe, K., et al.: Normal embryonic and germ cell development in mice lacking alpha 1,3-fucosyltransferase IX (Fut9) which show disappearance of stage-specific embryonic antigen 1. Mol. Cell. Biol. 24, 4221–4228 (2004). doi: 10.1128/MCB.24.10.4221-4228.2004 PubMedCrossRefGoogle Scholar
  13. 13.
    Feizi, T.: The antigens Ii, SSEA-1 and ABH are in interrelated system of carbohydrate differentiation antigens expressed on glycosphingolipids and glycoproteins. Adv. Exp. Med. Biol. 152, 167–177 (1982)PubMedGoogle Scholar
  14. 14.
    Andrews, P.W., Knowles, B.B., Cossu, G., Solter, D.: Teratocarcinoma and mouse embryo cell surface antigens: Characterization of the molecule(s) carrying the SSEA-1 antigenic determinant. In: Muramatsu, T., Gachelin, G., Mosocima, A.A., Ikawa, Y. (eds.) Teratocarcinoma and Embryonic Cell Interactions, pp. 103–119. Japan Scientific Societies Press, Tokyo (1982)Google Scholar
  15. 15.
    Childs, R.A., Pennington, J., Uemura, K., Goddfellow, P.N., Evans, M.J., Feizi, T.: High Molecular-weight glycoproteins are the major carriers of the carbohydrate differentiation antigens I, i, and SSEA-1 of mouse teratocarcinoma cells. Biochem. J. 215, 491–503 (1983)PubMedGoogle Scholar
  16. 16.
    Feizi, T.: Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 314, 53–57 (1985). doi: 10.1038/314053a0 PubMedCrossRefGoogle Scholar
  17. 17.
    Ozawa, M., Muramatsu, T., Solter, D.: SSEA-1, a stage-specific embryonic antigen of the mouse, is carried by the glycoprotein-bound large carbohydrate in embryonal carcinoma cells. Cell Differ. 16, 169–173 (1985). doi: 10.1016/0045-6039(85)90514-7 PubMedCrossRefGoogle Scholar
  18. 18.
    Kimber, S.J., MacQueen, H.A., Bagley, P.R.: Fucosylated glycoconjugates in mouse preimplantation embryos. J. Exp. Zool. 244, 395–408 (1987). doi: 10.1002/jez.1402440307 PubMedCrossRefGoogle Scholar
  19. 19.
    Fenderson, B.A., Eddy, E.M., Hakomori, S.: The blood group I antigen defined by monoclonal antibody C6 is a marker of early mesoderm during murine embryogenesis. Differentiation 38, 124–133 (1988). doi: 10.1111/j.1432-0436.1988.tb00206.x PubMedCrossRefGoogle Scholar
  20. 20.
    Fenderson, B.A., Eddy, E.M., Hakomori, S.: Glycoconjugate expression during embryogenesis and its biological significance. Bioessays 12, 173–179 (1990). doi: 10.1002/bies.950120406 PubMedCrossRefGoogle Scholar
  21. 21.
    Kannagi, R., Cochran, N.A., Ishigami, F., Hakomori, S., Andrews, P.W., Knowles, B.B., et al.: Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 2, 2355–2361 (1983)PubMedGoogle Scholar
  22. 22.
    Kannagi, R., Levery, S.B., Ishigami, F., Hakomori, S., Shevinsky, L.H., Knowles, B.B., et al.: New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J. Biol. Chem. 258, 8934–8942 (1983)PubMedGoogle Scholar
  23. 23.
    Shevinsky, L.H., Knowles, B.B., Damjanov, I., Solter, D.: Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell 30, 697–705 (1982). doi: 10.1016/0092-8674(82)90274-4 PubMedCrossRefGoogle Scholar
  24. 24.
    Kimber, S.J., Brown, D.G., Pahlsson, P., Nilsson, B.: Carbohydrate antigen expression in murine embryonic stem cells and embryos. II. Sialylated antigens and glycolipid analysis. Histochem. J. 25, 628–641 (1993). doi: 10.1007/BF00157877 PubMedCrossRefGoogle Scholar
  25. 25.
    Abe, K., McKibbin, J.M., Hakomori, S.: The monoclonal antibody directed to difucosylated type 2 chain (Fuc alpha 1 leads to 2Gal beta 1 leads to 4[Fuc alpha 1 leads to 3]GlcNAc; Y Determinant). J. Biol. Chem. 258, 11793–11797 (1983)PubMedGoogle Scholar
  26. 26.
    Wang, X.Q., Zhu, Z.M., Fenderson, B.A., Zeng, G.Q., Cao, Y.J., Jiang, G.T.: Effects of monoclonal antibody directed to LeY on implantation in the mouse. Mol. Hum. Reprod. 4, 295–300 (1998). doi: 10.1093/molehr/4.3.295 PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu, Z.M., Kojima, N., Stroud, M.R., Hakomori, S.I., Fenderson, B.A.: Monoclonal antibody directed to LeY oligosaccharide inhibits implantation in the mouse. Biol. Reprod. 52, 903–912 (1995). doi: 10.1095/biolreprod52.4.903 PubMedCrossRefGoogle Scholar
  28. 28.
    Shi, S., Williams, S.A., Seppo, A., Kurniawan, H., Chen, W., Ye, Z., et al.: Inactivation of the Mgat1 gene in oocytes impairs oogenesis, but embryos lacking complex and hybrid N-glycans develop and implant. Mol. Cell. Biol. 24, 9920–9929 (2004). doi: 10.1128/MCB.24.22.9920-9929.2004 PubMedCrossRefGoogle Scholar
  29. 29.
    Williams, S.A., Xia, L., Cummings, R.D., McEver, R.P., Stanley, P.: Fertilization in mouse does not require terminal galactose or N-acetylglucosamine on the zona pellucida glycans. J. Cell Sci. 120, 1341–1349 (2007). doi: 10.1242/jcs.004291 PubMedCrossRefGoogle Scholar
  30. 30.
    Philpott, C.C., Ringuette, M.J., Dean, J.: Oocyte-specific expression and developmental regulation of ZP3, the sperm receptor of the mouse zona pellucida. Dev. Biol. 121, 568–575 (1987). doi: 10.1016/0012-1606(87)90192-8 PubMedCrossRefGoogle Scholar
  31. 31.
    de Vries, W.N., Binns, L.T., Fancher, K.S., Dean, J., Moore, R., Kemler, R., et al.: Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes. Genesis 26, 110–112 (2000). doi: 10.1002/(SICI)1526-968X(200002)26:2<110::AID-GENE2>3.0.CO;2-8 PubMedCrossRefGoogle Scholar
  32. 32.
    Williams, S.A., Stanley, P.: Mouse fertility is enhanced by oocyte-specific loss of core 1-derived O-glycans. FASEB J. 22, 2273–2284 (2008). doi: 10.1096/fj.07-101709 PubMedCrossRefGoogle Scholar
  33. 33.
    De Vries, W.N., Evsikov, A.V., Haac, B.E., Fancher, K.S., Holbrook, A.E., Kemler, R., et al.: Maternal beta-catenin and E-cadherin in mouse development. Development 131, 4435–4445 (2004). doi: 10.1242/dev.01316 PubMedCrossRefGoogle Scholar
  34. 34.
    Ioffe, E., Liu, Y., Stanley, P.: Complex N-glycans in Mgat1 null preimplantation embryos arise from maternal Mgat1 RNA. Glycobiology 7, 913–919 (1997). doi: 10.1093/glycob/7.7.913 PubMedCrossRefGoogle Scholar
  35. 35.
    Dell, A., Chalabi, S., Easton, R.L., Haslam, S.M., Sutton-Smith, M., Patankar, M.S., et al.: Murine and human zona pellucida 3 derived from mouse eggs express identical O-glycans. Proc. Natl. Acad. Sci. U. S. A. 100, 15631–15636 (2003). doi: 10.1073/pnas.2635507100 PubMedCrossRefGoogle Scholar
  36. 36.
    Yamashita, T., Allende, M.L., Kalkofen, D.N., Werth, N., Sandhoff, K., Proia, R.L.: Conditional LoxP-flanked glucosylceramide synthase allele controlling glycosphingolipid synthesis. Genesis 43, 175–180 (2005). doi: 10.1002/gene.20167 PubMedCrossRefGoogle Scholar
  37. 37.
    Fenderson, B.A., Radin, N., Andrews, P.W.: Differentiation antigens of human germ cell tumours: Distribution of carbohydrate epitopes on glycolipids and glycoproteins analyzed using PDMP, an inhibitor of glycolipid synthesis. Eur. Urol. 23, 30–36 (1993)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Cell BiologyAlbert Einstein College of MedicineNew YorkUSA
  2. 2.Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK

Personalised recommendations