Glycoconjugate Journal

, Volume 25, Issue 8, pp 797–802 | Cite as

Defining substrate interactions with calreticulin: an isothermal titration calorimetric study

  • Garima Gupta
  • Emiliano Gemma
  • Stefan Oscarson
  • Avadhesha Surolia


Calreticulin (CRT) is a soluble, lectin chaperone found in the endoplasmic reticulum of eukaryotes. It binds the N-glycosylated polypeptides via the glycan intermediate Glc1Man5–9GlcNAc2, present on the target glycoproteins. Earlier we have studied interactions of substrate with CRT by isothermal titration calorimetry (ITC) and molecular modeling, to establish that CRT recognizes the Glcα1–3 linkage and forms contacts with each saccharide moiety of the oligosaccharide Glcα1–3Manα1–2Manα1–2Man. We also delineated the amino acid residues in the sugar binding pocket of CRT that play a crucial role in sugar–CRT binding. Here, we have used mono-deoxy analogues of the trisaccharide unit Glcα1–3Manα1–2Man to determine the role of various hydroxyl groups of the sugar substrate in sugar–CRT interactions. Using the thermodynamic data obtained by ITC with these analogues we demonstrate that the 3-OH group of Glc1 plays an important role in sugar–CRT binding, whereas the 6-OH group does not. Also, the 4-OH, 6-OH of Man2 and 3-OH, 4-OH of Man3 in the trisaccharide are involved in binding, of which 6-OH of Man2 and 4-OH of Man3 have a more significant role to play. This study sheds light further on the interactions between the substrate sugar of glycoproteins and the lectin chaperone CRT.


Calreticulin Isothermal titration calorimetry Sugar–CRT interaction 



Endoplasmic Reticulum






Endoplasmic Reticulum Associated protein Degradation


Isothermal Titration Calorimetry




Isopropyl β-d-1-thiogalactopyranoside


3-(N-Morpholino)-propanesulfonic acid


Sodium dodecyl sulphate-Polyacrylamide Gel Electrophoresis



This investigation was supported by grants from the Department of Science and Technology; Government of India to A.S. GG thanks the Council for Scientific and Industrial Research, India, for the award of a Senior Research Fellowship.


  1. 1.
    Helenius, A., Aebi, M.: Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004)PubMedCrossRefGoogle Scholar
  2. 2.
    Ellgaard, L., Helenius, A.: Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191 (2003)PubMedCrossRefGoogle Scholar
  3. 3.
    Ellgaard, L., Molinari, M., Helenius, A.: Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888 (1999)PubMedCrossRefGoogle Scholar
  4. 4.
    Roth, J.: Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control and cell interactions. Chem. Rev. 102, 285–303 (2002)PubMedCrossRefGoogle Scholar
  5. 5.
    Trombetta, E.S.: The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology 13, 77–91 (2003)CrossRefGoogle Scholar
  6. 6.
    Caramelo, J.J., Parodi, A.J.: Getting in and out from calnexin/calreticulin cycles. J. Biol. Chem. 283, 10221–10225 (2008)PubMedCrossRefGoogle Scholar
  7. 7.
    Williams, D.B.: Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J. Cell Sci. 119, 615–623 (2006)PubMedCrossRefGoogle Scholar
  8. 8.
    Patil, A.R., Thomas, C.J., Surolia, A.: Kinetics and the mechanism of interaction of the endoplasmic reticulum chaperone, calreticulin, with mono-glucosylated (Glc1Man9GlcNAc2) substrate. J. Biol. Chem. 275, 24348–24356 (2000)PubMedCrossRefGoogle Scholar
  9. 9.
    Michalak, M., Corbett, E.F., Mesaeli, N., Nakamura, K., Opas, M.: Calreticulin: one protein, one gene, many functions. Biochem. J. 344, 281–292 (1999)PubMedCrossRefGoogle Scholar
  10. 10.
    Krause, K.H., Michalak, M.: Calreticulin. Cell 88, 439–443 (1997)PubMedCrossRefGoogle Scholar
  11. 11.
    Ware, F., Vassilakos, A., Peterson, P.A., Jackson, M.R., Lehrman, M.A., Williams, D.B.: The molecular chaperone Calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270, 4697–4704 (1995)PubMedCrossRefGoogle Scholar
  12. 12.
    Oliver, J.D., van der Wal, F.J., Bulleid, N.J., High, S.: Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275, 86–88 (1997)PubMedCrossRefGoogle Scholar
  13. 13.
    Baksh, S., Burns, K., Andrin, C., Michalak, M.: Interaction of calreticulin with protein disulphide isomerase. J. Biol. Chem. 270, 31338–31344 (1995)PubMedCrossRefGoogle Scholar
  14. 14.
    Hebert, D.N., Zhang, J.X., Chen, W., Foellmer, B., Helenius, A.: The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J. Cell Biol. 139, 613–623 (1997)PubMedCrossRefGoogle Scholar
  15. 15.
    Schrag, J.D., Bergeron, J.J.M., Li, Y., Borisova, S., Hahn, M., Thomas, D.Y., Cygler, M.: The structure of Calnexin, an ER chaperone involved in quality control of protein folding. Mol. Cell 8, 633–644 (2001)PubMedCrossRefGoogle Scholar
  16. 16.
    Kapoor, M., Srinivas, H., Kandiah, E., Gemma, E., Ellgaard, L., Oscarson, S., Helenius, A., Surolia, A.: Interactions of substrate with calreticulin, an endoplasmic reticulum chaperone. J. Biol. Chem. 278, 6194–6200 (2003)PubMedCrossRefGoogle Scholar
  17. 17.
    Totani, K., Ihara, Y., Matsuo, I., Ito, Y.: Substrate specificity analysis of endoplasmic reticulum glucosides II using synthetic high-mannose type glycans. J. Biol. Chem. 281, 31502–31508 (2006)PubMedCrossRefGoogle Scholar
  18. 18.
    Roth, J., Ziak, M., Zuber, C.: The role of glucosidase II and endomannosidase in glucose trimming of asparagine-linked oligosaccharides. Biochimie 85, 287–294 (2003)PubMedCrossRefGoogle Scholar
  19. 19.
    Ritter, C., Quirin, K., Kowarik, M., Helenius, A.: Minor folding defects trigger local modification of glycoproteins by the ER folding sensor GT. EMBO J. 24, 1730–1738 (2005)PubMedCrossRefGoogle Scholar
  20. 20.
    Totani, K., Ihara, Y., Matsuo, I., Koshino, H., Ito, Y.: Synthetic substrates for an endoplasmic reticulum protein-folding sensor, UDP-glucose: glycoprotein glucosyltransferase. Angew Chem. Int. Ed. Engl. 44, 7950–7954 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    Soldà, T., Galli, C., Kaufman, R.J., Molinari, M.: Substrate-specific requirements for UGT1-dependent release from calnexin. Mol. Cell 27, 238–249 (2007)PubMedCrossRefGoogle Scholar
  22. 22.
    Ruddock, L.W., Molinari, M.: N-glycan processing in ER quality control. J. Cell Sci. 119, 4373–4380 (2006)PubMedCrossRefGoogle Scholar
  23. 23.
    Meusser, B., Hirsch, C., Jarosch, E., Sommer, T.: ERAD: the long road to destruction. Nat. Cell Biol. 7, 766–772 (2005)PubMedCrossRefGoogle Scholar
  24. 24.
    Gopalakrishnapai, J., Gupta, G., Karthikeyan, T., Sinha, S., Kandiah, E., Gemma, E., Oscarson, S., Surolia, A.: Isothermal titration calorimetric study defines the substrate binding residues of calreticulin. Biochem. Biophys. Res. Comm. 351, 14–20 (2006)PubMedCrossRefGoogle Scholar
  25. 25.
    Kapoor, M., Ellgaard, L., Gopalakrishnapai, J., Schirra, C., Gemma, E., Oscarson, S., Helenius, A., Surolia, A.: Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition. Biochemistry 43, 97–106 (2004)PubMedCrossRefGoogle Scholar
  26. 26.
    Gemma, E., Lahmann, M., Oscarson, S.: Synthesis of monodeoxy analogues of the trisaccharide alpha-d-Glcp-(1®3)-alpha-d-Manp-(1®2)-alpha-d-ManpOMe recognised by Calreticulin/Calnexin. Carbohydr. Res. 341, 1533–1542 (2006)PubMedCrossRefGoogle Scholar
  27. 27.
    Gemma, E., Lahmann, M., Oscarson, S.: Synthesis of the tetrasaccharide alpha-d-Glcp-(1®3)-alpha-d-Manp-(1®2)-alpha-d-Manp-(1®2)-alpha-d-Manp recognized by calreticulin/calnexin. Carbohydr. Res. 340, 2558–2562 (2005)PubMedCrossRefGoogle Scholar
  28. 28.
    Peterson, J.R., Helenius, A.: In vitro reconstitution of calreticulin-substrate interactions. J. Cell Sci. 112, 2775–2784 (1999)PubMedGoogle Scholar
  29. 29.
    Gill, S.C., von Hippel, P.H.: Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989)PubMedCrossRefGoogle Scholar
  30. 30.
    Oscarson, S., Svahnberg, P.: Synthesis of a tri- and tetradeoxy analogue of methyl 3,6-di-O-alpha-d-mannopyranosyl-alpha-d-mannopyranoside for investigation of the binding site of various plant lectins. Carbohydr Res. 309, 207–212 (1998)PubMedCrossRefGoogle Scholar
  31. 31.
    Oscarson, S., Tedebark, U.: Syntheses of deoxy analogues of methyl 3,6-di-O-alpha-d-mannopyranosyl-alpha-d-mannopyranoside for studies of the binding site of concanavalin A. Carbohydr Res. 278, 271–287 (1995)PubMedCrossRefGoogle Scholar
  32. 32.
    Ito, Y., Hagihara, S., Arai, M.A., Matsuo, I., Takatani, M.: Synthesis of fluorine substituted oligosaccharide analogues of monoglucosylated glycan chain, a proposed ligand of lectin-chaperone calreticulin and calnexin. Glycoconj. J. 21, 257–266 (2004)PubMedCrossRefGoogle Scholar
  33. 33.
    Tatami, A., Hon, Y.S., Matsuo, I., Takatani, M., Koshino, H., Ito, Y.: Analyses of carbohydrate binding property of lectin-chaperone calreticulin. Biochem. Biophys. Res. Comm. 364, 332–337 (2007)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Garima Gupta
    • 1
  • Emiliano Gemma
    • 2
  • Stefan Oscarson
    • 2
    • 3
  • Avadhesha Surolia
    • 1
    • 4
  1. 1.Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Organic Chemistry, Arrhenius LaboratoryStockholm UniversityStockholmSweden
  3. 3.School of Chemistry and Chemical BiologyUniversity College DublinDublinIreland
  4. 4.National Institute of ImmunologyNew DelhiIndia

Personalised recommendations