Glycoconjugate Journal

, Volume 25, Issue 8, pp 703–712 | Cite as

Generation and characterization of a series of monoclonal antibodies that specifically recognize [HexA(±2S)-GlcNAc]n epitopes in heparan sulfate

  • Kiyoshi Suzuki
  • Koji Yamamoto
  • Yutaka Kariya
  • Hiroshi Maeda
  • Takeshi Ishimaru
  • Shuichi Miyaura
  • Masahiro Fujii
  • Akiko Yusa
  • Eun Ji Joo
  • Koji Kimata
  • Reiji Kannagi
  • Yeong Shik Kim
  • Mamoru Kyogashima


Five monoclonal antibodies AS17, 22, 25, 38 and 48, a single monoclonal antibody ACH55, and three monoclonal antibodies NAH33, 43, 46, that recognize acharan sulfate (IdoA2S-GlcNAc)n, acharan (IdoA-GlcNAc)n and N-acetyl-heparosan (GlcA-GlcNAc)n, respectively, were generated by immunization of mice with keyhole limpet hemocyanin-conjugated polysaccharides. Specificity tests were performed using a panel of biotinylated GAGs that included chemically modified heparins. Each antibody bound avidly to the immunized polysaccharide, but did not bind to chondroitin sulfates, keratan sulfate, chondroitin nor hyaluronic acid. AS antibodies did not bind to heparan sulfate or heparin, but bound to 6-O-desulfated, N-desulfated and re-N-acetylated heparin to varying degrees. ACH55 bound to tri-desulfated and re-N-acetylated heparin but hardly bound to other modified heparins. NAH antibodies did not bind to heparin and modified heparins but bound to heparan sulfate to varying degrees. NAH43 and NAH46 also bound to partially N-de-acetylated N-acetyl-heparosan. Immunohistochemical analysis in rat cerebella was performed with the antibodies. While NAH46 stained endothelia, where heparan sulfate is typically present, neither ACH55 nor AS25 stained endothelia. On the contrary ACH55 and AS25 stained the molecular layer of the rat cerebella. Furthermore, ACH55 specifically stained Purkinje cells. These results suggest that there is unordinary expression of IdoA2S-GlcNAc and IdoA-GlcNAc in specific parts of the nervous system.


Monoclonal antibody Heparan sulfate Acharan sulfate Acharan N-acetyl-heparosan 



acharan sulfate, acharan and N-acetyl-heparosan


heparan sulfate


D-glucuronic acid


L-iduronic acid


unspecified hexuronic acid


4,5-unsaturated hexuronic acid




N-unsubstituted D-glucosamine










N-desulfated/N-acetylated heparin


6-O-desulfated heparin


6-O-desulfated/N-acetylated heparin


6-O-desulfated/N-desulfated/N-acetylated heparin


2-O-desulfated/N-desulfated/N-acetylated heparin


6-O-desulfated/2-O-desulfated heparin


6-O-desulfated/2-O-desulfated/N-acetylated heparin


6-O-desulfated/2-O-desulfated/N-desulfated/N-acetylated heparin


partially N-de-acetylated N-acetyl-heparosan


high-performance liquid chromatography




keyhole limpet hemocyanin


enzyme-linked immunosorbent assay


  1. 1.
    Kannagi, R., Hakomori, S.: A guide to monoclonal antibodies directed to glycotopes. Adv. Exp. Med. Biol. 491, 587–630 (2001)PubMedGoogle Scholar
  2. 2.
    Esko, J.D., Selleck, S.B.: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002)PubMedCrossRefGoogle Scholar
  3. 3.
    Smits, N.C., Lensen, J.F., Wijnhoven, T.J., Ten Dam, G.B., Jenniskens, G.J., van Kuppevelt, T.H.: Phage display-derived human antibodies against specific glycosaminoglycan epitopes. Methods Enzymol. 416, 61 – 87 (2006)PubMedCrossRefGoogle Scholar
  4. 4.
    Yamada, S., Sugahara, K.: Structure of oligosaccharides isolated from heparan sulfate/heparin and substrate specificities of the degrading enzymes of bacterial origin. Trends Glycosci. Glycotech. 10, 95–123 (1998)Google Scholar
  5. 5.
    Kariya, Y., Yoshida, K., Morikawa, K., Tawada, A., Miyazono, H., Kikuchi, H., Tokuyasu, K.: Preparation of unsaturated disaccharides by eliminative cleavage of heparin and heparan sulfate with heparitinases. Comp. Biochem. Physiol. B. 103, 473–479 (1992)PubMedCrossRefGoogle Scholar
  6. 6.
    Guo, Y.C., Conrad, H.E.: The disaccharide composition of heparins and heparan sulfates. Anal. Biochem. 176, 96–104 (1989)PubMedCrossRefGoogle Scholar
  7. 7.
    Kariya, Y., Herrmann, J., Suzuki, K., Isomura, T., Ishihara, M.: Disaccharide analysis of heparin and heparan sulfate using deaminative cleavage with nitrous acid and subsequent labeling with paranitrophenyl hydrazine. J. Biochem. (Tokyo) 123, 240–246 (1998)Google Scholar
  8. 8.
    Shively, J.E., Conrad, H.E.: Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry 15, 3932–3942 (1976)PubMedCrossRefGoogle Scholar
  9. 9.
    Kim, Y.S., Jo, Y.Y., Chang, I.M., Toida, T., Park, Y., Linhardt, R.J.: A new glycosaminoglycan from the giant African snail Achatina fulica. J. Biol. Chem. 271, 11750–11755 (1996)PubMedCrossRefGoogle Scholar
  10. 10.
    Vann, W.F., Schmidt, M.A., Jann, B., Jann, K.: The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli 010:K5:H4. A polymer similar to desulfo-heparin. Eur. J. Biochem. 116, 359–364 (1981)PubMedCrossRefGoogle Scholar
  11. 11.
    Trescony, P.V., Oegema Jr, T.R., Farnam, B.J., Deloria, L.B.: Analysis of heparan sulfate from the Engelbreth–Holm–Swarm (EHS) tumor. Connect. Tissue Res. 19, 219 – 242 (1989)PubMedCrossRefGoogle Scholar
  12. 12.
    David, G., Bai, X.M., Van der Schueren, B., Cassiman, J.J., Van den Berghe, H.: Developmental changes in heparan sulfate expression: in situ detection with mAbs. J. Cell Biol. 119, 961–975 (1992)PubMedCrossRefGoogle Scholar
  13. 13.
    Takano, R., Kanda, T., Hayashi, K., Yoshida, K., Hara, S.: Desulfation of sulfated carbohydrates mediated by silylating reagents. J. Carbohydr. Chem. 14, 885 – 888 (1995)CrossRefGoogle Scholar
  14. 14.
    Takano, R., Ye, Z., Ta, T.-V., Hayashi, K., Kariya, Y., Hara, S.: Specific 6-O-desulfation of heparin. Carbohydr. Lett. 3, 71–77 (1998)Google Scholar
  15. 15.
    Kariya, Y., Kyogashima, M., Suzuki, K., Isomura, T., Sakamoto, T., Horie, K., Ishihara, M., Takano, R., Kamei, K., Hara, S.: Preparation of completely 6-O-desulfated heparin and its ability to enhance activity of basic fibroblast growth factor. J Biol. Chem. 275, 25949–25958 (2000)PubMedCrossRefGoogle Scholar
  16. 16.
    Ayotte, L., Perlin, A.S.: N.m.r. spectroscopic observations related to the function of sulfate groups in heparin. Calcium binding vs. biological activity. Carbohydr. Res. 145, 267 – 277 (1986)PubMedCrossRefGoogle Scholar
  17. 17.
    Danishefsky, I.: Desulfation of heparin. Methods Carbohydr. Chem. 5, 407–409 (1965)Google Scholar
  18. 18.
    Carlsson, J., Drevin, H., Axen, R.: Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochem. J. 173, 723 – 737 (1978)PubMedGoogle Scholar
  19. 19.
    ten Dam, G.B., van de Westerlo, E.M., Smetsers, T.F., Willemse, M., van Muijen, G.N., Merry, C.L., Gallagher, J.T., Kim, Y.S., van Kuppevelt, T.H.: Detection of 2-O-sulfated iduronate and N-acetylglucosamine units in heparan sulfate by an antibody selected against acharan sulfate (IdoA2S-GlcNAc)n. J. Biol. Chem. 279, 38346 – 38352 (2004)PubMedCrossRefGoogle Scholar
  20. 20.
    Born, J., Jann, K., Assmann, K.J., Lindahl, U., Berden, J.H.: N-Acetylated domains in heparan sulfates revealed by a monoclonal antibody against the Escherichia coli K5 capsular polysaccharide. Distribution of the cognate epitope in normal human kidney and transplant kidney with chronic vascular rejection. J. Biol. Chem. 271, 22802 – 22809 (1996)PubMedCrossRefGoogle Scholar
  21. 21.
    Maeda, N., He, J., Yajima, Y., Mikami, T., Sugahara, K., Yabe, T.: Heterogeneity of the chondroitin sulfate portion of phosphacan/6B4 proteoglycan regulates its binding affinity for pleiotrophin/heparin binding growth-associated molecule. J. Biol .Chem. 278, 35805 – 35811 (2003)PubMedCrossRefGoogle Scholar
  22. 22.
    Bao, X., Pavao, M.S., Dos Santos, J.C., Sugahara, K.: A functional dermatan sulfate epitope containing iduronate (2-O-sulfate)alpha1-3GalNAc(6-O-sulfate) disaccharide in the mouse brain: demonstration using a novel monoclonal antibody raised against dermatan sulfate of ascidian Ascidia nigra. J. Biol. Chem. 280, 23184 – 23193 (2005)PubMedCrossRefGoogle Scholar
  23. 23.
    von Holst, A., Sirko, S., Faissner, A.: The unique 473HD-chondroitin sulfate epitope is expressed by radial glia and involved in neural precursor cell proliferation. J. Neurosci. 26, 4082 – 4094 (2006)CrossRefGoogle Scholar
  24. 24.
    Purushothaman, A., Fukuda, J., Mizumoto, S., ten Dam, G.B., van Kuppevelt, T.H., Kitagawa, H., Mikami, T., Sugahara, K.: Functions of chondroitin sulfate/dermatan sulfate chains in brain development. Critical roles of E and iE disaccharide units recognized by a single chain antibody GD3G7. J. Biol. Chem. 282, 19442–19452 (2007)PubMedCrossRefGoogle Scholar
  25. 25.
    Jang-Lee, J., North, S.J., Sutton-Smith, M., Goldberg, D., Panico, M., Morris, H., Haslam, S., Dell, A.: Glycomic profiling of cells and tissues by mass spectrometry: fingerprinting and sequencing methodologies. Methods Enzymol. 415, 59 – 86 (2006)PubMedCrossRefGoogle Scholar
  26. 26.
    Haslam, S.M., North, S.J., Dell, A.: Mass spectrometric analysis of N- and O-glycosylation of tissues and cells. Curr. Opin. Struct. Biol. 16, 584 – 591 (2006)PubMedCrossRefGoogle Scholar
  27. 27.
    Tissot, B., Gasiunas, N., Powell, A.K., Ahmed, Y., Zhi, Z.L., Haslam, S.M., Morris, H.R., Turnbull, J.E., Gallagher, J.T., Dell, A.: Towards GAG glycomics: analysis of highly sulfated heparins by MALDI-TOF mass spectrometry. Glycobiology 17, 972 – 982 (2007)PubMedCrossRefGoogle Scholar
  28. 28.
    Minamisawa, T., Suzuki, K., Hirabayashi, J.: Multistage mass spectrometric sequencing of keratan sulfate-related oligosaccharides. Anal. Chem. 78, 891 – 900 (2006)PubMedCrossRefGoogle Scholar
  29. 29.
    Laremore, T.N., Zhang, F., Linhardt, R.J.: Ionic liquid matrix for direct UV-MALDI-TOF-MS analysis of dermatan sulfate and chondroitin sulfate oligosaccharides. Anal. Chem. 79, 1604 – 1610 (2007)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kiyoshi Suzuki
    • 1
  • Koji Yamamoto
    • 1
  • Yutaka Kariya
    • 1
  • Hiroshi Maeda
    • 1
  • Takeshi Ishimaru
    • 2
  • Shuichi Miyaura
    • 2
  • Masahiro Fujii
    • 3
    • 4
  • Akiko Yusa
    • 3
  • Eun Ji Joo
    • 5
  • Koji Kimata
    • 6
  • Reiji Kannagi
    • 3
  • Yeong Shik Kim
    • 5
  • Mamoru Kyogashima
    • 1
    • 3
    • 7
  1. 1.Central Research LaboratoriesSeikagaku CorporationTokyoJapan
  2. 2.Research Laboratories Seikagaku Biobusiness CorporationTokyoJapan
  3. 3.Division of Molecular PathologyAichi Cancer Center Research InstituteNagoyaJapan
  4. 4.Division of Surgical Oncology, Department of SurgeryNagoya University Graduate School of MedicineNagoyaJapan
  5. 5.Natural Products Research Institute, College of PharmacySeoul National UniversitySeoulKorea
  6. 6.Institute for Molecular Science of MedicineAichi Medical UniversityNagakuteJapan
  7. 7.Department of Oncology, Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan

Personalised recommendations