Skip to main content

Sequential synthesis of chondroitin oligosaccharides by immobilized chondroitin polymerase mutants


Escherichia coli strain K4 expresses a chondroitin (CH)-polymerizing enzyme (K4CP) that contains two glycosyltransferase active domains. K4CP alternately transfers glucuronic acid (GlcA) and N-acetyl-galactosamine (GalNAc) residues using UDP-GlcA and UDP-GalNAc donors to the nonreducing end of a CH chain acceptor. Here we generated two K4CP point mutants substituted at the UDP-sugar binding motif (DXD) in the glycosyltransferase active domains, which showed either glycosyltransferase activity of the intact domain and retained comparable activity after immobilization onto agarose beads. The mutant enzyme-immobilized beads exhibited an addition of GlcA or GalNAc to GalNAc or GlcA residue at the nonreducing end of CH oligosaccharides and sequentially elongated pyridylamine-conjugated CH (PA-CH) chain by the alternate use. The sequential elongation up to 16-mer was successfully achieved as assessed by fluorescent detection on a gel filtration chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI potential lift tandem TOF mass spectrometry (MALDI-LIFT-TOF/TOF MS/MS) analyses in the negative reflection mode. This method provides exactly defined CH oligosaccharide derivatives, which are useful for studies on glycosaminoglycan functions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6





chondroitin sulfate




D-glucuronic acid


GalNAc transferase


GlcA transferase


CH polymerase from Escherichia coli strain K4


matrix-assisted laser desorption/ionization and time-of-flight mass spectrometry


matrix-assisted laser desorption/ionization and potential lift tandem time-of-flight mass spectrometry

m/z :

mass-per-charge ratio




  1. 1.

    Handel, T.M., Johnson, Z., Crown, S.E., Lau, E.K., Proudfoot, A.E.: Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu. Rev. Biochem. 74, 385–410 (2005)

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Haltiwanger, R.S., Lowe, J.B.: Role of glycosylation in development. Annu. Rev. Biochem. 73, 491–537 (2004)

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Mizuguchi, S., Uyama, T., Kitagawa, H., Nomura, K.H., Dejima, K., Gengyo-Ando, K., Mitani, S., Sugahara, K., Nomura, K.: Chondroitin proteoglycans are involved in cell division of caenorhabditis elegans. Nature 423, 443–8 (2003)

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Gowda, D.C.: Role of chondroitin-4-sulfate in pregnancy-associated malaria. Adv. Pharmacol. 53, 375–400 (2006)

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Watanabe, H., Yamada, Y., Kimata, K.: Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J. Biochem (Tokyo) 124, 687–93 (1998)

    CAS  Google Scholar 

  6. 6.

    Ashikari-Hada, S., Habuchi, H., Kariya, Y., Itoh, N., Reddi, A.H., Kimata, K.: Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J. Biol. Chem. 279, 12346–54 (2004)

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Stern, R., Asari, A.A., Sugahara, K.N.: Hyaluronan fragments: An information-rich system. Eur. J. Cell Biol. 85, 699–715 (2006)

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Maeda, N., Fukazawa, N., Hata, T.: The binding of chondroitin sulfate to pleiotrophin/heparin-binding growth-associated molecule is regulated by chain length and oversulfated structures. J. Biol. Chem. 281, 4894–902 (2006)

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Sotogaku, N., Tully, S.E., Gama, C.I., Higashi, H., Tanaka, M., Hsieh-Wilson, L.C., Nishi, A.: Activation of phospholipase c pathways by a synthetic chondroitin sulfate-E tetrasaccharide promotes neurite outgrowth of dopaminergic neurons. J. Neurochem. 103, 749–60 (2007)

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Tully, S.E., Mabon, R., Gama, C.I., Tsai, S.M., Liu, X., Hsieh-Wilson, L.C.: A chondroitin sulfate small molecule that stimulates neuronal growth. J. Am. Chem. Soc. 126, 7736–7 (2004)

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Tamura, J., Tokuyoshi, M.: Synthesis of chondroitin sulfate E hexasaccharide in the repeating region by an effective elongation strategy toward longer chondroitin oligosaccharide. Biosci. Biotechnol. Biochem. 68, 2436–43 (2004)

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Lidholt, K., Fjelstad, M.: Biosynthesis of the Escherichia coli K4 capsule polysaccharide. A parallel system for studies of glycosyltransferases in chondroitin formation. J. Biol. Chem. 272, 2682–7 (1997)

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Ninomiya, T., Sugiura, N., Tawada, A., Sugimoto, K., Watanabe, H., Kimata, K.: Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J. Biol. Chem. 277, 21567–75 (2002)

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Jing, W., DeAngelis, P.L.: Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida. Glycobiology 13, 661–71 (2003)

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    DeAngelis, P.L., Oatman, L.C., Gay, D.F.: Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors. J. Biol. Chem. 278, 35199–203 (2003)

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Sugiura, N., Shimokata, S., Watanabe, H., Kimata, K.: MS analysis of chondroitin polymerization: Effects of Mn2+ ions on the stability of UDP-sugars and chondroitin synthesis. Anal. Biochem. 365, 62–73 (2007)

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Highsmith, S., Garvin Jr., J.H., Chipman, D.M.: Mechanism of action of bovine testicular hyaluronidase. mapping of the active site. J. Biol. Chem. 250, 7473–80 (1975)

    PubMed  CAS  Google Scholar 

  18. 18.

    Hayashi, S.: Study on the degradation of glycosaminoglycans by canine liver lysosomal enzymes. The contributions of hyaluronidase, β-glucuronidase, sulfatase, and β-N-acetylhexosaminidase in the case of chondroitin 4-sulfate. J. Biochem. (Tokyo) 83, 149–57 (1978)

    CAS  Google Scholar 

  19. 19.

    Takagaki, K., Takeda, Y., Nakamura, T., Daidouji, K., Narita, H., Endo, M.: Analysis of glycosaminoglycans by high-performance liquid chromatography. J. Biochem. Biophys. Methods 28, 313–20 (1994)

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5 (1970)

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Hase, S., Ibuki, T., Ikenaka, T.: Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J. Biochem. (Tokyo) 95, 197–203 (1984)

    CAS  Google Scholar 

  22. 22.

    Tomiya, N., Takahashi, N.: Contribution of component monosaccharides to the coordinates of neutral and sialyl pyridylaminated N-glycans on a two-dimensional sugar map. Anal. Biochem. 264, 204–10 (1998)

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Hirabayashi, J., Arata, Y., Kasai, K.: Reinforcement of frontal affinity chromatography for effective analysis of lectin-oligosaccharide interactions. J. Chromatogr. A 890, 261–71 (2000)

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Okamoto, M., Takahashi, K., Doi, T., Takimoto, Y.: High-sensitivity detection and postsource decay of 2-aminopyridine-derivatized oligosaccharides with matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 69, 2919–26 (1997)

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Iwafune, M., Kakizaki, I., Nakazawa, H., Nukatsuka, I., Endo, M., Takagaki, K.: A glycomic approach to proteoglycan with a two-dimensional polysaccharide chain map. Anal. Biochem. 325, 35–40 (2004)

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Plaas, A.H., Hascall, V.C., Midura, R.J.: Ion exchange HPLC microanalysis of chondroitin sulfate: Quantitative derivatization of chondroitin lyase digestion products with 2-aminopyridine. Glycobiology 6, 823–9 (1996)

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Minamisawa, T., Suzuki, K., Hirabayashi, J.: Systematic identification of N-acetylheparosan oligosaccharides by tandem mass spectrometric fragmentation. Rapid Commun. Mass Spectrom. 20, 267–74 (2006)

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

    Article  CAS  Google Scholar 

  29. 29.

    Nakata, H.: A rule to account for mass shifts in fragmentations of even-electron organic ions in mass specrometry. J. Mass Spectrom. Soc. Jpn. 50, 173–88 (2002)

    CAS  Google Scholar 

  30. 30.

    Minamisawa, T., Suzuki, K., Maeda, H., Shimokata, S., Sugiura, N., Kimata, K., Hirabayashi, J.: Characterization of isomeric unsulfated glycosaminoglycan oligosaccharides by mass spectrometry/mass spectrometry. J. Mass Spectrom. Soc. Jpn. 55, 1–6 (2007)

    CAS  Google Scholar 

  31. 31.

    Tawada, A., Masa, T., Oonuki, Y., Watanabe, A., Matsuzaki, Y., Asari, A.: Large-scale preparation, purification, and characterization of hyaluronan oligosaccharides from 4-mers to 52-mers. Glycobiology 12, 421–6 (2002)

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Takagaki, K., Munakata, H., Majima, M., Kakizaki, I., Endo, M.: Chimeric glycosaminoglycan oligosaccharides synthesized by enzymatic reconstruction and their use in substrate specificity determination of streptococcus hyaluronidase. J. Biochem. (Tokyo) 127, 695–702 (2000)

    CAS  Google Scholar 

Download references


We are grateful to Hiroshi Maeda and Yuniko Shibata, Seikagaku Corporation for kindly providing desulfated CH. We thank Minoru Fukayama, Aichi Medical University and Takashi Nirasawa and Nobuyuki Shimura, Bruker Daltonics for assistance in MALDI-TOF MS and MALDI-LIFT-TOF/TOF MS/MS analyses. This work was supported by a special research fund from Seikagaku Corporation by the New Energy and Industrial Technology Development Organization (NEDO) and by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information



Corresponding author

Correspondence to Nobuo Sugiura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sugiura, N., Shimokata, S., Minamisawa, T. et al. Sequential synthesis of chondroitin oligosaccharides by immobilized chondroitin polymerase mutants. Glycoconj J 25, 521–530 (2008).

Download citation


  • Chondroitin
  • Stepwise glycosylation
  • MS/MS fragmentation
  • Pyridylamination