Advertisement

Glycoconjugate Journal

, Volume 25, Issue 6, pp 521–530 | Cite as

Sequential synthesis of chondroitin oligosaccharides by immobilized chondroitin polymerase mutants

  • Nobuo SugiuraEmail author
  • Satoshi Shimokata
  • Toshikazu Minamisawa
  • Jun Hirabayashi
  • Koji Kimata
  • Hideto Watanabe
Article

Abstract

Escherichia coli strain K4 expresses a chondroitin (CH)-polymerizing enzyme (K4CP) that contains two glycosyltransferase active domains. K4CP alternately transfers glucuronic acid (GlcA) and N-acetyl-galactosamine (GalNAc) residues using UDP-GlcA and UDP-GalNAc donors to the nonreducing end of a CH chain acceptor. Here we generated two K4CP point mutants substituted at the UDP-sugar binding motif (DXD) in the glycosyltransferase active domains, which showed either glycosyltransferase activity of the intact domain and retained comparable activity after immobilization onto agarose beads. The mutant enzyme-immobilized beads exhibited an addition of GlcA or GalNAc to GalNAc or GlcA residue at the nonreducing end of CH oligosaccharides and sequentially elongated pyridylamine-conjugated CH (PA-CH) chain by the alternate use. The sequential elongation up to 16-mer was successfully achieved as assessed by fluorescent detection on a gel filtration chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI potential lift tandem TOF mass spectrometry (MALDI-LIFT-TOF/TOF MS/MS) analyses in the negative reflection mode. This method provides exactly defined CH oligosaccharide derivatives, which are useful for studies on glycosaminoglycan functions.

Keywords

Chondroitin Stepwise glycosylation MALDI-TOF MS MS/MS fragmentation Pyridylamination 

Abbreviations

CH

chondroitin

CS

chondroitin sulfate

GalNAc

N-acetyl-D-galactosamine

GlcA

D-glucuronic acid

GalNAc-T

GalNAc transferase

GlcA-T

GlcA transferase

K4CP

CH polymerase from Escherichia coli strain K4

MALDI-TOF MS

matrix-assisted laser desorption/ionization and time-of-flight mass spectrometry

MALDI-LIFT-TOF/TOF MS/MS

matrix-assisted laser desorption/ionization and potential lift tandem time-of-flight mass spectrometry

m/z

mass-per-charge ratio

PA

pyridylamine

Notes

Acknowledgements

We are grateful to Hiroshi Maeda and Yuniko Shibata, Seikagaku Corporation for kindly providing desulfated CH. We thank Minoru Fukayama, Aichi Medical University and Takashi Nirasawa and Nobuyuki Shimura, Bruker Daltonics for assistance in MALDI-TOF MS and MALDI-LIFT-TOF/TOF MS/MS analyses. This work was supported by a special research fund from Seikagaku Corporation by the New Energy and Industrial Technology Development Organization (NEDO) and by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. 1.
    Handel, T.M., Johnson, Z., Crown, S.E., Lau, E.K., Proudfoot, A.E.: Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu. Rev. Biochem. 74, 385–410 (2005)PubMedCrossRefGoogle Scholar
  2. 2.
    Haltiwanger, R.S., Lowe, J.B.: Role of glycosylation in development. Annu. Rev. Biochem. 73, 491–537 (2004)PubMedCrossRefGoogle Scholar
  3. 3.
    Mizuguchi, S., Uyama, T., Kitagawa, H., Nomura, K.H., Dejima, K., Gengyo-Ando, K., Mitani, S., Sugahara, K., Nomura, K.: Chondroitin proteoglycans are involved in cell division of caenorhabditis elegans. Nature 423, 443–8 (2003)PubMedCrossRefGoogle Scholar
  4. 4.
    Gowda, D.C.: Role of chondroitin-4-sulfate in pregnancy-associated malaria. Adv. Pharmacol. 53, 375–400 (2006)PubMedCrossRefGoogle Scholar
  5. 5.
    Watanabe, H., Yamada, Y., Kimata, K.: Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J. Biochem (Tokyo) 124, 687–93 (1998)Google Scholar
  6. 6.
    Ashikari-Hada, S., Habuchi, H., Kariya, Y., Itoh, N., Reddi, A.H., Kimata, K.: Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J. Biol. Chem. 279, 12346–54 (2004)PubMedCrossRefGoogle Scholar
  7. 7.
    Stern, R., Asari, A.A., Sugahara, K.N.: Hyaluronan fragments: An information-rich system. Eur. J. Cell Biol. 85, 699–715 (2006)PubMedCrossRefGoogle Scholar
  8. 8.
    Maeda, N., Fukazawa, N., Hata, T.: The binding of chondroitin sulfate to pleiotrophin/heparin-binding growth-associated molecule is regulated by chain length and oversulfated structures. J. Biol. Chem. 281, 4894–902 (2006)PubMedCrossRefGoogle Scholar
  9. 9.
    Sotogaku, N., Tully, S.E., Gama, C.I., Higashi, H., Tanaka, M., Hsieh-Wilson, L.C., Nishi, A.: Activation of phospholipase c pathways by a synthetic chondroitin sulfate-E tetrasaccharide promotes neurite outgrowth of dopaminergic neurons. J. Neurochem. 103, 749–60 (2007)PubMedCrossRefGoogle Scholar
  10. 10.
    Tully, S.E., Mabon, R., Gama, C.I., Tsai, S.M., Liu, X., Hsieh-Wilson, L.C.: A chondroitin sulfate small molecule that stimulates neuronal growth. J. Am. Chem. Soc. 126, 7736–7 (2004)PubMedCrossRefGoogle Scholar
  11. 11.
    Tamura, J., Tokuyoshi, M.: Synthesis of chondroitin sulfate E hexasaccharide in the repeating region by an effective elongation strategy toward longer chondroitin oligosaccharide. Biosci. Biotechnol. Biochem. 68, 2436–43 (2004)PubMedCrossRefGoogle Scholar
  12. 12.
    Lidholt, K., Fjelstad, M.: Biosynthesis of the Escherichia coli K4 capsule polysaccharide. A parallel system for studies of glycosyltransferases in chondroitin formation. J. Biol. Chem. 272, 2682–7 (1997)PubMedCrossRefGoogle Scholar
  13. 13.
    Ninomiya, T., Sugiura, N., Tawada, A., Sugimoto, K., Watanabe, H., Kimata, K.: Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J. Biol. Chem. 277, 21567–75 (2002)PubMedCrossRefGoogle Scholar
  14. 14.
    Jing, W., DeAngelis, P.L.: Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida. Glycobiology 13, 661–71 (2003)PubMedCrossRefGoogle Scholar
  15. 15.
    DeAngelis, P.L., Oatman, L.C., Gay, D.F.: Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors. J. Biol. Chem. 278, 35199–203 (2003)PubMedCrossRefGoogle Scholar
  16. 16.
    Sugiura, N., Shimokata, S., Watanabe, H., Kimata, K.: MS analysis of chondroitin polymerization: Effects of Mn2+ ions on the stability of UDP-sugars and chondroitin synthesis. Anal. Biochem. 365, 62–73 (2007)PubMedCrossRefGoogle Scholar
  17. 17.
    Highsmith, S., Garvin Jr., J.H., Chipman, D.M.: Mechanism of action of bovine testicular hyaluronidase. mapping of the active site. J. Biol. Chem. 250, 7473–80 (1975)PubMedGoogle Scholar
  18. 18.
    Hayashi, S.: Study on the degradation of glycosaminoglycans by canine liver lysosomal enzymes. The contributions of hyaluronidase, β-glucuronidase, sulfatase, and β-N-acetylhexosaminidase in the case of chondroitin 4-sulfate. J. Biochem. (Tokyo) 83, 149–57 (1978)Google Scholar
  19. 19.
    Takagaki, K., Takeda, Y., Nakamura, T., Daidouji, K., Narita, H., Endo, M.: Analysis of glycosaminoglycans by high-performance liquid chromatography. J. Biochem. Biophys. Methods 28, 313–20 (1994)PubMedCrossRefGoogle Scholar
  20. 20.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5 (1970)PubMedCrossRefGoogle Scholar
  21. 21.
    Hase, S., Ibuki, T., Ikenaka, T.: Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J. Biochem. (Tokyo) 95, 197–203 (1984)Google Scholar
  22. 22.
    Tomiya, N., Takahashi, N.: Contribution of component monosaccharides to the coordinates of neutral and sialyl pyridylaminated N-glycans on a two-dimensional sugar map. Anal. Biochem. 264, 204–10 (1998)PubMedCrossRefGoogle Scholar
  23. 23.
    Hirabayashi, J., Arata, Y., Kasai, K.: Reinforcement of frontal affinity chromatography for effective analysis of lectin-oligosaccharide interactions. J. Chromatogr. A 890, 261–71 (2000)PubMedCrossRefGoogle Scholar
  24. 24.
    Okamoto, M., Takahashi, K., Doi, T., Takimoto, Y.: High-sensitivity detection and postsource decay of 2-aminopyridine-derivatized oligosaccharides with matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 69, 2919–26 (1997)PubMedCrossRefGoogle Scholar
  25. 25.
    Iwafune, M., Kakizaki, I., Nakazawa, H., Nukatsuka, I., Endo, M., Takagaki, K.: A glycomic approach to proteoglycan with a two-dimensional polysaccharide chain map. Anal. Biochem. 325, 35–40 (2004)PubMedCrossRefGoogle Scholar
  26. 26.
    Plaas, A.H., Hascall, V.C., Midura, R.J.: Ion exchange HPLC microanalysis of chondroitin sulfate: Quantitative derivatization of chondroitin lyase digestion products with 2-aminopyridine. Glycobiology 6, 823–9 (1996)PubMedCrossRefGoogle Scholar
  27. 27.
    Minamisawa, T., Suzuki, K., Hirabayashi, J.: Systematic identification of N-acetylheparosan oligosaccharides by tandem mass spectrometric fragmentation. Rapid Commun. Mass Spectrom. 20, 267–74 (2006)PubMedCrossRefGoogle Scholar
  28. 28.
    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)CrossRefGoogle Scholar
  29. 29.
    Nakata, H.: A rule to account for mass shifts in fragmentations of even-electron organic ions in mass specrometry. J. Mass Spectrom. Soc. Jpn. 50, 173–88 (2002)Google Scholar
  30. 30.
    Minamisawa, T., Suzuki, K., Maeda, H., Shimokata, S., Sugiura, N., Kimata, K., Hirabayashi, J.: Characterization of isomeric unsulfated glycosaminoglycan oligosaccharides by mass spectrometry/mass spectrometry. J. Mass Spectrom. Soc. Jpn. 55, 1–6 (2007)Google Scholar
  31. 31.
    Tawada, A., Masa, T., Oonuki, Y., Watanabe, A., Matsuzaki, Y., Asari, A.: Large-scale preparation, purification, and characterization of hyaluronan oligosaccharides from 4-mers to 52-mers. Glycobiology 12, 421–6 (2002)PubMedCrossRefGoogle Scholar
  32. 32.
    Takagaki, K., Munakata, H., Majima, M., Kakizaki, I., Endo, M.: Chimeric glycosaminoglycan oligosaccharides synthesized by enzymatic reconstruction and their use in substrate specificity determination of streptococcus hyaluronidase. J. Biochem. (Tokyo) 127, 695–702 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nobuo Sugiura
    • 1
    Email author
  • Satoshi Shimokata
    • 1
    • 2
  • Toshikazu Minamisawa
    • 2
    • 3
  • Jun Hirabayashi
    • 3
  • Koji Kimata
    • 1
  • Hideto Watanabe
    • 1
  1. 1.Institute for Molecular Science of MedicineAichi Medical UniversityNagakuteJapan
  2. 2.Central Research LaboratoriesSeikagaku CorporationTateno, Higashiyamato-shiJapan
  3. 3.Research Center for Medical GlycoscienceNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations