Advertisement

Glycoconjugate Journal

, Volume 24, Issue 8, pp 497–507 | Cite as

Inhibition of galectin-3 mediated cellular interactions by pectic polysaccharides from dietary sources

  • U. V. Sathisha
  • Smitha Jayaram
  • M. A. Harish Nayaka
  • Shylaja M. Dharmesh
Article

Abstract

Pectic polysaccharides from dietary sources such as Decalepis hamiltonii—swallow root (SRPP), Hemidesmus indicus (HPP), Nigella sativa—black cumin (BCPP), Andrographis serpyllifolia—(APP), Zingiber officinale—ginger (GRPP) and, citrus pectin (CPP) were examined for galectin inhibitory activity. Inhibition of (a) galectin-3 of MDA-MB-231 cells induced hemagglutination of red blood cells; (b) galectin-3 mediated interaction between normal/metastatic human buccal cells (NBC)/(MBC) and; (c) invasion of MDA-MB-231 and MBC in the invasive chamber was assessed. Results indicated that SRPP inhibited hemagglutination at Minimum Inhibitory Concentration (MIC) of 1.86 μg ml−1 equivalent of carbohydrate as apposed to those of BCPP (130 μg ml−1), APP (40 μg ml−1), HPP (40 μg ml−1) and CPP (25 μg ml−1). GRPP even at concentration >1–6 mg ml−1 did not inhibit agglutination. Also SRPP showed ∼15 and 2 fold potent anti hemagglutination activity relative to that of galectin-3 specific sugars—galactose (MIC-27.1 μg ml−1) and lactose (MIC-4.16 μg ml−1) respectively. Further, SRPP at 10 μg ml−1 inhibited agglutination of NBC by galectin-3 of MDA-MB-231 cells. Modified swallow root pectic polysaccharide (MSRPP) of 50 kDa retained anti hemagglutination activity (MIC of 1.03 μg ml−1) and inhibited MDA-MB-231 and MBC invasion by 73 and 50% with an IC50 of 136 and 200 μg ml−1 respectively. Both SRPP and MSRPP induced apoptosis up to 80% at 100 μg ml−1 concentration by activating ∼2 and 8 folds of Caspase-3 activity. Sugar composition analysis and its correlation with the galectin inhibitory property indicated that pectic polysaccharides with higher arabinose and galactose content—arabinogalactan inhibited hemagglutination significantly.

Keywords

Galectin-3 Pectic polysaccharide Hemagglutination Anti metastatic activity Arabinogalactan Modified pectic polysaccharide 

Abbreviations

SRPP

swallow root pectic polysaccharide

HPP

Hemidesmus pectic polysaccharide

BCPP

black cumin pectic polysaccharide

APP

Andrographis pectic polysaccharide

GRPP

ginger pectic polysaccharide

CPP

citrus pectic polysaccharide

NBC

normal human buccal cells

MBC

metastatic human buccal cells

MIC

Minimum Inhibitory Concentration

MSRPP

modified swallow root pectic polysaccharide

Notes

Acknowledgement

Authors thank Dr. V. Prakash, Director, CFTRI, for his keen interest in the work and encouragement. Authors are also thankful to Dr. S.G. Bhat, Head, Department of Biochemistry and Nutrition and Dr. H.P. Ramesh, Head, Cell Culture Facility for their help. SMD thank Department of Biotechnology, New Delhi, India and Department of Science and Technology, New Delhi, India for financial assistance.

References

  1. 1.
    Zoltan-Jones, A., Huang, L., Ghatak, S., Toole, B.P.: Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J. Biol. Chem. 278, 45801–45810 (2003)PubMedCrossRefGoogle Scholar
  2. 2.
    Beuth, J., Ko, H.L., Oette, K., et al.: Inhibition of liver metastasis in mice by blocking hepatocyte lectins with arabinogalactan infusions and D-galactose. J. Cancer Res. Clin. Oncol. 113, 51–55 (1987)PubMedCrossRefGoogle Scholar
  3. 3.
    Bresalier, R.S., Yan, P.S., Byrd, J.C., Lotan, R., Raz, A.: Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer Res. 80, 776–787 (1997)Google Scholar
  4. 4.
    Davidson, P.J., Davis, M.J., Patterson, R.J., Ripoche, M.A., Poirier, F., Wang, J.L.: Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology 12, 329–337 (2002)PubMedCrossRefGoogle Scholar
  5. 5.
    Dharmesh, S.M., Skelton, T.P., Baenziger, J.U.: Co-ordinate and restricted expression of the ProXaa Arg/Lys-specific GalNAC-transferase and the GalNAC β1,4, GlcNAC β1,2 Man α-4 sulfotransferase. J. Biol. Chem. 268, 17096–17102 (1993)PubMedGoogle Scholar
  6. 6.
    Doll, R.: An overview of the epidemiological evidence linking diet and cancer. Proc. Nutr. Soc. 49, 119–131 (1990)PubMedCrossRefGoogle Scholar
  7. 7.
    Dunphy, J.L., Barcham, G.J., Bischot, R., Young, A.R., Nash, A., Meeusen, E.N.T.: Isolation and characterization of a novel eosinophil-specific galectin released into the lungs in response to allergen challenge. J. Biol. Chem. 277, 14916–14924 (2002)PubMedCrossRefGoogle Scholar
  8. 8.
    Gray, C.A., Adelson, D.L., Bazer, F.W., Burghardt, R.C., Meeusen, E.N.T., Spencer, T.E.: Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proc. Natl. Acad. Sci. U. S. A. 10, 7982–7987 (2004)CrossRefGoogle Scholar
  9. 9.
    Gupta, S., Gollapudi, S.: TNF-alpha-induced apoptosis in human naïve and memory CD8+ T cells in aged humans. Exp. Gerontol. 41, 67–77 (2006)CrossRefGoogle Scholar
  10. 10.
    Hagmar, B., Ryd, W., Skomedal, H.: Arabinogalactan blockade of experimental metastases to liver by murine hepatoma. Invasion Metastasis 11, 348–355 (1991)PubMedGoogle Scholar
  11. 11.
    Hansen, M.B., Nielsen, S.E., Berg, K.: Reexamination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203–210 (1989)PubMedCrossRefGoogle Scholar
  12. 12.
    Inohara, H., Raz, A.: Effects of natural complex carbohydrate (citrus pectin) on murine melanoma cell properties related to galectin-3 functions. Glycoconj. J. 11, 527–532 (1994)PubMedCrossRefGoogle Scholar
  13. 13.
    Kidd, P.: A new approach to metastatic cancer prevention: modified citrus pectin (MCP), a unique pectin that blocks cell surface lectins. Altern. Med. Rev. 1, 4–10 (1996)Google Scholar
  14. 14.
    Kiyohara, H., Hirano, M., Wen, X.G., Matsumoto, T., Sun, X.B., Yamada, H.: Characterization of an anti-ulcer pectic polysaccharide from leaves of Panax ginseng. Carbohydr. Res. 263, 89–101 (1994)PubMedCrossRefGoogle Scholar
  15. 15.
    Kohn, E.C.: Development and prevention of metastasis. Anticancer Res. 13, 2553–2559 (1993)PubMedGoogle Scholar
  16. 16.
    Konstantinov, K.N., Robbins, B.A., Liu, F.T.: Galectin-3, a beta-galactoside-binding animal lectin, is a marker of anaplastic large-cell lymphoma. Am. J. Pathol. 148, 25–30 (1996)PubMedGoogle Scholar
  17. 17.
    Nagata, S.: Apoptosis by death factor. Cell 88, 355–365 (1997)PubMedCrossRefGoogle Scholar
  18. 18.
    Nangia-Makker, P., Thompson, E., Hogan, C., Ochieng, J., Raz, A.: Induction of tumorigenicity by galectin-3 in a non-tumorigenic human breast carcinoma cell line. Int. J. Oncol. 23, 1079–1087 (1995)Google Scholar
  19. 19.
    Nangia-Makker, P., Baccarini, S., Raz, A.: Carbohydrate-recognition and angiogenesis. Cancer Metastasis Rev. 19, 51–57 (2000)PubMedCrossRefGoogle Scholar
  20. 20.
    Nangia-Makker, P., Hogan, V., Honjo, Y., Sarvis, R., Akahani, S., Pienta, K.J., Raz, A.: Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am. J. Pathol. 156, 899–909 (2000)PubMedGoogle Scholar
  21. 21.
    Nangia-Makker, P., Hogan, V., Honjo, Y., Yuichiro, H., Baccarini, S., Tait, L., Bresalier, R., Raz, A: Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J. Natl. Cancer Inst. 94, 1854–1862 (2002)PubMedGoogle Scholar
  22. 22.
    Nowak, T.P., Haywood, P.L., Barondes, S.H.: Developmentally regulated lectin in embryonic chick muscle and a myogenic cell line. Biochem. Biophys. Res. Commun. 68, 650–657 (1976)PubMedCrossRefGoogle Scholar
  23. 23.
    Ochieng, J., Fridman, R., Nagaia Makker, P., Kleiener, D.E., Liotta, L.A., Stetler-Stevenson, W.G., Raz, A.: Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry 33, 14109–14114 (1994)PubMedCrossRefGoogle Scholar
  24. 24.
    Ogden, A.T., Nunes, I., Ko, K., Wu, S.J., Hines, C.S., Wang, A.F., Hedge, R.S., Lang, R.A.: GRIFIN: a novel lens-specific protein related to the galectin family. J. Biol. Chem. 273, 28889–28896 (1998)PubMedCrossRefGoogle Scholar
  25. 25.
    Olano-Martin, E., Rimbach, G.H., Gibson, G.R., Rastall, R.A.: Pectin and pectic-oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells. Anticancer Res. 23, 341–346 (2003)PubMedGoogle Scholar
  26. 26.
    Phatak, L., Chang, K.C., Brown, G.: Isolation and characterization of pectin in sugar-beet pulp. J. Food Sci. 53, 830–833 (1988)CrossRefGoogle Scholar
  27. 27.
    Pienta, K.J., Nailk, H., Akhtar, A., Yamazaki, K., Replogle, T.S., Lehr, J., Donat, T.L., Tait, L., Hogan, V., Raz, A.: Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J. Natl. Cancer Inst. 87, 348–353 (1995)PubMedCrossRefGoogle Scholar
  28. 28.
    Powell, A.A., LaRue, J.M., Batta, A.K., Martinez, J.D.: Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HT 116 cells. Biochem. J. 356, 481–486 (2001)PubMedCrossRefGoogle Scholar
  29. 29.
    Rao, P., Pattabiraman, T.N.: Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Anal. Biochem. 181, 18–22 (1989)PubMedCrossRefGoogle Scholar
  30. 30.
    Rabinovich, G.A.: Galectins: an evolutionarily conserved family of animal lectins with multifunctional properties; a trip from the gene to clinical therapy. Cell Death Differ. 6, 711–721 (1999)PubMedCrossRefGoogle Scholar
  31. 31.
    Rajeshwari, N., Shylaja, M.D., Krishnappa, M., Shetty, H.S., Mortensen, C.N., Mathur, S.B.: Development of ELISA for the detection of Ralstonia solanacearum in tomato: its application in seed health testing. World J. Micro. Biotech. 14, 697–704 (1998)CrossRefGoogle Scholar
  32. 32.
    Raz, A., Lotan, R.: Endogenous galactoside-binding lectins: a new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev. 6, 433–452 (1987)PubMedCrossRefGoogle Scholar
  33. 33.
    Raju, T.S., Jagadish, R.L., Anjaneyalu, Y.V.: Characterization of EDTA-soluble polysaccharides from the scape of Musa paradisiaca (banana). Biotechnol. Appl. Biochem. 33, 53–59 (2001)PubMedCrossRefGoogle Scholar
  34. 34.
    Song, Y.K., Billiar, T.R., Lee, Y.J.: Role of galectin-3 in breast cancer metastasis: involvement of nitric oxide. Am. J. Pathol. 160, 1069–1075 (2002)PubMedGoogle Scholar
  35. 35.
    Stierstorfer, B., Kaltner, H., Neumuller, C., Sinowatz, F., Gabius, H.J.: Temporal and spatial regulation of expression of two galectins during kidney development of the chicken. Histochem. J. 32, 325–336 (2000)PubMedCrossRefGoogle Scholar
  36. 36.
    Takenaka, Y., Fukumori, T., Raz, A.: Galectin-3 and metastasis. Glycoconj. J. 19, 543–549 (2004)PubMedCrossRefGoogle Scholar
  37. 37.
    Tharanathan, R.N., Changala Reddy, G., Muralikrishna, G., Susheelamma, N.S., Ramadas Bhat, U.: Structure of a galactoarabinan-rich pectic polysaccharide of native and fermented blackgram (Phaseolus mungo). Carbohydr. Polym. 23, 121–127 (1994)CrossRefGoogle Scholar
  38. 38.
    Uhlenbruck, G., Beuth, J., Oette, K., Roszkowski, W., Ko, H.L., Pulverer, G.: Prevention of experimental liver metastasis by arabinogalactan. Naturwissenschaften 73, 626–627 (1986)PubMedCrossRefGoogle Scholar
  39. 39.
    Chanana, V., Majumdar, S., Rishi, P.: Involvement of caspase-3, lipid peroxidation and TNF-alpha in causing apoptosis of macrophages by coordinately expressed Salmonella phenotype under stress conditions. Mol. Immunol. 44, 1551–1558 (2007)PubMedCrossRefGoogle Scholar
  40. 40.
    Wong, C.K., Leung, K.N., Fung, K.P.: Immunomodulatory and anti-tumor polysaccharides from medicinal plants. J. Int. Med. Res. 22, 299–312 (1994)PubMedGoogle Scholar
  41. 41.
    Zhu, W.Q., Ochieng, J.: Rapid release of galectin-3 from breast carcinoma cells by fetuin. Cancer Res. 61, 1869–1873 (2001)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • U. V. Sathisha
    • 1
  • Smitha Jayaram
    • 1
  • M. A. Harish Nayaka
    • 1
  • Shylaja M. Dharmesh
    • 1
  1. 1.Department of Biochemistry and NutritionCentral Food Technological Research InstituteMysoreIndia

Personalised recommendations