Glycoconjugate Journal

, Volume 24, Issue 4–5, pp 243–249 | Cite as

LPS suppresses expression of asialoglycoprotein-binding protein through TLR4 in thioglycolate-elicited peritoneal macrophages



Macrophages are known to express various types of endocytosis receptors that mediate the removal of foreign pathogens. Macrophage asialoglycoprotein-binding protein (M-ASGP-BP) is a Gal/GalNAc-specific lectin, which functions as an endocytosis receptor. We found here that LPS is able to down-regulate the mRNA expression of M-ASGP-BP in a time-dependent manner using thioglycolate-elicited rat and mouse peritoneal macrophages. However, LPS does not modulate the mRNA expression of M-ASGP-BP from macrophages of C3H/HeN mice, which have a point mutation of TLR4, the primary LPS receptor. Furthermore, an inhibitor of NF-κB was observed to efficiently block the suppressive effect of LPS on M-ASGP-BP as well as to inhibit the phosphorylated IκB. These results demonstrate that the mRNA expression of M-ASGP-BP is down-regulated by the LPS-mediated TLR4 pathway involving NF-κB activation, suggesting that engagement of M-ASGP-BP by LPS may yield a negative signal that interferes with the LPS-induced positive signals mediated by proinflammatory cytokines.


Macrophage asialoglycoprotein-binding protein C-type lectin LPS TLR4 NF-κB 



macrophage asialoglycoprotein-binding protein


macrophage C-type galactose/N-acetylgalactosamine-specific lectin





toll-like receptor 4


mitogen-activated protein kinase


extracellular signal-regulated protein kinase


c-Jun amino-terminal kinase


nuclear factor kappa B


inhibitor of NF-κB



The authors would like to thank Ms. Tomoko Tominaga for the secretarial assistance.

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas, A-14082203, to T. Kawasaki, and for Scientific Research, C-18590471, to B.Y. Ma from the Japan Society for the Promotion of Science, Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Lewis, C., McGee J.O.D.: The Macrophage: The Natural Immune System. IRL at Oxford University Press, Oxford (1992)Google Scholar
  2. 2.
    Wileman, T.E., Lennartz, M.R., Stahl, P.D.: Identification of the macrophage mannose receptor as a 175-kDa membrane protein. Proc. Natl. Acad. Sci. U.S.A. 83, 2501–2505 (1986)PubMedCrossRefGoogle Scholar
  3. 3.
    Drickamer. K., Taylor, M.E.: Biology of animal lectins. Annu. Rev. Cell Biol. 9, 237–264 (1993)PubMedCrossRefGoogle Scholar
  4. 4.
    Guha, M., Mackman, N.: LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85–94 (2001)PubMedCrossRefGoogle Scholar
  5. 5.
    Lynn, W.A., Cohen, J.: Adjunctive therapy for septic shock: a review of experimental approaches. Clin. Infect. Dis. 20, 143–158 (1995)PubMedGoogle Scholar
  6. 6.
    Williams, K.J., Tabas, I.: The response-to-retention hypothesis of atherogenesis reinforced. Curr. Opin. Lipidol. 9, 471–474 (1998)PubMedCrossRefGoogle Scholar
  7. 7.
    Ii, M., Kurada, H., Itoh, N., Yamashina, I., Kawasaki, T.: Molecular cloning and sequence analysis of cDNA encoding the macrophage lectin specific for galactose and N-acetylgalactosamine. J. Biol. Chem. 265, 11295–11298 (1990)PubMedGoogle Scholar
  8. 8.
    Ozaki, K., Ii, M., Itoh, N., Kawasaki, T.: Expression of a functional asialoglycoprotein receptor through transfection of a cloned cDNA that encodes a macrophage lectin. J. Biol. Chem. 267, 9229–9235 (1992)PubMedGoogle Scholar
  9. 9.
    Sato, M., Kawakami, K., Osawa, T., Toyoshima, S.: Molecular cloning and expression of cDNA encoding a galactose/N-acetylgalactosamine-specific lectin on mouse tumoricidal macrophages. J. Biochem. 111, 331–336 (1992)PubMedGoogle Scholar
  10. 10.
    Russell, M.E., Utans, U., Wallace, A.F., Liang, P., Arceci, R.J., Karnovsky M.J., Wyner, L.R., Yamashida, Y., Tarn, C.: Identification and upregulation of galactose/N-acetylgalactosamine macrophage lectin in rat cardiac allografts with arteriosclerosis. J. Clin. Invest. 94, 722–730 (1994)PubMedCrossRefGoogle Scholar
  11. 11.
    Katsuyama, R., Morioka, A., Oka, S., Kawasaki, T.: Expression of macrophage asialoglycoprotein-binding protein is induced through MAPK classical pathway. Biochem. Biophys. Res. Commun. 280, 1269–1273 (2001)PubMedCrossRefGoogle Scholar
  12. 12.
    Mikolajczak, S.A., Ma, B.Y., Yoshida, T., Yoshida, R., Kelvin, D.J., Ochi, A.: The modulation of CD40 ligand signaling by transmembrane CD28 splice variant in human T cells. J. Exp. Med. 199, 1025–1031 (2004)PubMedCrossRefGoogle Scholar
  13. 13.
    Poltorak, A., He, X., Smirnova, I., Liu, M., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Castagnoli, P.R., Layton, B., Beutler, B.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in TLR4 gene. Science 282, 2085–2088 (1998)PubMedCrossRefGoogle Scholar
  14. 14.
    Herrera-Velit, P., Reiner, N.E.: Bacterial lipopolysaccharide induces the association and coordinate activation of p53/56lyn and phosphatidylinositol 3-kinase in human monocytes. J. Immunol. 156, 1157–1165 (1996)PubMedGoogle Scholar
  15. 15.
    Han, J., Lee, J.D., Bibbs, L., Ulevitch, R.J.,:A MAP kinase targeted by endotoxin and hyposmolarity in mammalian cells. Science 265, 808–811 (1994)PubMedCrossRefGoogle Scholar
  16. 16.
    Jakway, J.P., DeFranco, A.L.: Pertussis toxin inhibition of B cell and macrophage response to bacterial lipopolysaccharide. Science 234, 743–746 (1986)PubMedCrossRefGoogle Scholar
  17. 17.
    Sanghera, J.S, Weinstein, S.L., Aluwalia, M., Gien, J., Pelech, S.L.: Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J. Immunol. 156, 4457–4465 (1996)PubMedGoogle Scholar
  18. 18.
    Sato, K., Imai, Y., Irimura, T.: Contribution of dermal macrophage trafficking in the sensitization phase of contact hypersensitivity. J. Immunol. 161, 6835–6844 (1998)PubMedGoogle Scholar
  19. 19.
    Chun, K.H., Imai, Y., Higashi, N., Irimura, T.: Migration of dermal cells expressing a macrophage C-type lectin during the sensitization phase of delayed-type hypersensitivity. J. Leukoc. Biol. 68, 471–478 (2000)PubMedGoogle Scholar
  20. 20.
    Guha, M., Mackman, N.: LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85–94 (2001)PubMedCrossRefGoogle Scholar
  21. 21.
    Swantek, J.L., Christerson, L., Cobb, M.H.: Lipopolysaccharide-induced tumor necrosis factor-α promoter activity is inhibitor of nuclear factor-κB kinase-dependent. J. Biol. Chem. 274, 11667–11671 (1999)PubMedCrossRefGoogle Scholar
  22. 22.
    Higashi, N., Fujioka, K., Denda-Nagai, K., Hashimoto, S., Nagai, S., Sato, T., Fujita, Y., Morikawa, A., Tsuiji, M., Miyata-Takeuchi, M., Sano, Y., Suzuki, N., Yamamoto, K., Matsushima, K., Irimura, T.: The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cell. J. Biol. Chem. 277, 20686–20693 (2002)PubMedCrossRefGoogle Scholar
  23. 23.
    Tsuiji, M., Fujimori, M., Ohashi, Y., Higashi, N., Onami, T.M., Hedrick, S.M., Irimura, T.:Molecular cloning and characterization of a novel mouse macrophage C-type lectin, mMGL2, which has a distinct carbohydrate specificity from Mmgl. J. Biol. Chem. 277, 28892–28901 (2002)PubMedCrossRefGoogle Scholar
  24. 24.
    Shepherd, V.L., Abdolrasulnia, R., Garrett, M., Cowan, H.B.: Down-regulation of mannose receptor activity in macrophages after treatment with lipopolysaccharide and phorbol esters. J. Immunol. 145, 1530–1536 (1990)PubMedGoogle Scholar
  25. 25.
    Van Lenten, B.J., Fogelman, A.M., Seager, J., Ribi, E., Haberland, M.E., Edwards, P.A.: Bacterial endotoxin selectively prevents the expression of scavenger-receptor activity on human monocyte-macrophages. J. Immunol. 134, 3718–3721 (1985)PubMedGoogle Scholar
  26. 26.
    Weiel, J.E., Adams, D.O., Hamilton, T.A.: Biochemical models of gamma-interferon action: Altered expression of transferrin receptors on murine peritoneal macrophages after treatment in vitro with PMA or A23187. J. Immunol. 134, 293–298 (1985)PubMedGoogle Scholar
  27. 27.
    Pahl, H.: Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18, 6853–6866 (1999)PubMedCrossRefGoogle Scholar
  28. 28.
    Ma, W., Lim, W., Gee, K., Aucoin, S., Nandan, D., Kozlowski, M., Diaz-Mitoma, F., Kumar, A.: The p38 mitogen activated kinase pathway regulates the human IL-10 promoter via the activation of Sp1 transcription factor in lipopolysaccharide-stimulated human macrophages. J. Biol. Chem. 276, 13664–13674 (2001)PubMedGoogle Scholar
  29. 29.
    Hambleton, J., Weinstein, S.L., Lem, L., DeFranco, A.L.: Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc. Natl. Acad. Sci. U.S.A. 93, 2774–2778 (1996)PubMedCrossRefGoogle Scholar
  30. 30.
    Groupp, E.R., Donovan-Peluso, M.: Lipopolysaccharide induction of THP-1 cells activates binding of c-Jun, Ets, Egr-1 to the tissue factor promoter. J. Biol. Chem. 271, 12423–12430 (1996)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Research Center for GlycobiotechnologyRitsumeikan UniversityShigaJapan
  2. 2.Department of Biological Chemistry, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
  3. 3.School of Health Sciences, Faculty of MedicineKyoto UniversityKyotoJapan

Personalised recommendations