Glycoconjugate Journal

, Volume 23, Issue 9, pp 627–638 | Cite as

Differential surface expression and possible function of 9-O- and 7-O-acetylated GD3 (CD60 b and c) during activation and apoptosis of human tonsillar B and T lymphocytes

  • Michael Erdmann
  • Dirk Wipfler
  • Anette Merling
  • Yi Cao
  • Christine Claus
  • Bernhard Kniep
  • Haneen Sadick
  • Wolfgang Bergler
  • Reinhard Vlasak
  • Reinhard Schwartz-Albiez


The disialoganglioside GD3 (CD60 a) and its O-acetylated variants have previously been described as surface molecules of human T lymphocytes of the peripheral blood system. Here we report the expression of the 9-O-, and 7-O-acetylated disialoglycans of GD3 (CD60 b and CD60 c respectively) on human tonsillar lymphocytes. CD60 b and c are surface-expressed on activated germinal centre B cells and colocalize in raft-like structures on the cell surface together with the cytoplasmic tyrosine kinase Lyn and Syk. Addition of CD60 b and c mAb together with anti-IgM/IL-4 to in vitro cultivated tonsillar B cells resulted in a costimulatory effect. During spontaneous and staurosporine-induced apoptosis a distinct population of activated annexin V+/CD60 b+/CD60 c- B cells was observed. CD60 b and c are also found on cells of the extrafollicular T cell area. On tonsillar T cells, CD60 b mAb had a costimulatory effect together with PHA while CD60 c mAb alone was sufficient to induce proliferation. In further contrast to B cells, during apoptosis a distinct CD60 b+ T cell subpopulation was not observed. Together, surface-expressed CD60 b and c are differently expressed on tonsillar B and T cells and may be involved in the regulation of activation and apoptosis of lymphocytes in secondary lymphatic tissue.


Ganglioside Germinal center Lipid rafts O-acetylated sialic acid Signal transduction 



bovine serum albumin


cholera toxin subunit B


enhanced chemoluminescence


fetal calf serum


fluorescein isothiocyanate


laser scan microscopy


monoclonal antibody(ies)


O-sialoendoglycoprotein endopeptidase


phosphate buffered saline






Vibrio cholerae sialidase



We sincerely thank Dr. H. Spring, DKFZ, Heidelberg for performing the confocal laser scan microscopy of this study and Dr. R. Schauer, University of Kiel for critical reading of the manuscript.

This study was financially supported by the Tumorzentrum Heidelberg/Mannheim and a grant of the Deutsche Forschungsgemeinschaft (DFG) to R.S.-A. (Schw 381/4-1).


  1. 1.
    Schauer, R.: Sialic acids: Fascinating sugars in higher animals and man. Zoology 107, 49–64 (2004)CrossRefPubMedGoogle Scholar
  2. 2.
    Tiralongo, J., Schauer, R.: The enigma of enzymatic sialic acid O-acetylation. Trends Glycosci. Glycotechnol. 16, 1–15 (2004)Google Scholar
  3. 3.
    Blum, A.S., Barnstable, C.J.: O-acetylation of a cell-surface carbohydrate creates discrete molecular patterns during neuronal development. Proc. Natl. Acad. Sci. USA 84, 8716–8720 (1987)CrossRefPubMedGoogle Scholar
  4. 4.
    Santiago, M.F., Costa, M.R., Mendez-Otero, R.: Immunoblockage of 9-O-acetyl GD3 ganglioside arrests the in vivo migration of cerebrellar granule neurons. J. Neurosci. 24, 474–478 (2004)CrossRefPubMedGoogle Scholar
  5. 5.
    Shi, W.X., Chammas, R., Varki, N.M., Powell, L., Varki, A.: Sialic acid 9-O-acetylation on murine erythroleukemia cells affects complement activation, binding to I-type lectins, and tissue homing. J. Biol. Chem. 271, 31526–31532 (1996)CrossRefPubMedGoogle Scholar
  6. 6.
    Rogers, G.N., Herrler, G., Paulson, G.C., Klenk, H.D.: Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 261, 5947–5951 (1986)PubMedGoogle Scholar
  7. 7.
    Vlasak, R., Luytjes, W., Spaan, W., Palese, P.: Human and bovine coronoviruses recognize sialic acid containing receptors similar to those of influenza C viruses. Proc. Natl. Acad. Sci. USA 85, 4526–4529 (1988)CrossRefPubMedGoogle Scholar
  8. 8.
    Fox, D.A., He, X., Abe, A., Hollander, T., Li, L.L., Kann, L., Friedman, A.W., Shimizu, Y., Shayman, J.A., Kozarsky, K.: The T lymphocyte structure CD60 contains a sialylated carbohydrate epitope that is expressed on both gangliosides and glycoproteins. Immunol. Invest. 30, 67–85 (2001)CrossRefPubMedGoogle Scholar
  9. 9.
    Kniep, B., Peter-Katalinic, J., Flegel, W.A., Northoff, H., Rieber, E.P.: CDw60 antibodies bind to acetylated forms of ganglioside GD3. Biochem. Biophys. Res. Commun. 187, 1343–1349 (1992)CrossRefPubMedGoogle Scholar
  10. 10.
    Kniep, B., Flegel, W.A., Northoff, H., Rieber, E.P.: CDw60 glycolipid antigens of human leukocytes: Structural characterization and cellular distribution. Blood 82, 1776–1786 (1993)PubMedGoogle Scholar
  11. 11.
    Rieber, E.P., Rank, G.: CDw60: A marker for human CD8+ T helper cells. J. Exp. Med. 179, 1385–1390 (1994)CrossRefPubMedGoogle Scholar
  12. 12.
    Fox, D.A., Millard, J.A., Kan, L., Zeldes, W.S., Davis, W., Higgs, J., Emmrich, F., Kinne, R.W.: Activation pathways of synovial T lymphocytes. Expression and function of the UM4D4/CDw60 antigen. J. Clin. Invest. 86, 1124–1136 (1990)PubMedGoogle Scholar
  13. 13.
    Kniep, B., Claus, C., Peter-Katalinic, J., Monner, D.A., Dippold, W., Nimtz, M.: 7-O-acetyl-GD3 in human T lymphocytes is detected by a specific T-cell-activating monoclonal antibody. J. Biol. Chem. 270, 30173–30180 (1995)CrossRefPubMedGoogle Scholar
  14. 14.
    Welte, K., Miller, G., Chapman, B.P., Yuasa, H., Natoli, H., Kunicka, J.E., Cordon-Cardo, C., Buhrer, C., Old, L.J., Houghton, A.N.: Stimulation of T lymphocyte proliferation by monoclonal antibodies against GD3 ganglioside. J. Immunol. 139, 1763–1771 (1987)PubMedGoogle Scholar
  15. 15.
    Schwartz-Albiez, R.: Carbohydrates and lectin: Section report. In: Mason, D. (ed.) Leucocyte Typing VII, pp. 149–164. Oxford University Press, Oxford (2002)Google Scholar
  16. 16.
    Kasahara, K., Watanabe, K., Takeuchi, K., Kaneko, H., Oohira, A., Yamamoto, T., Sanai, Y.: Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts. J. Biol. Chem. 275, 34701–34709 (2000)CrossRefPubMedGoogle Scholar
  17. 17.
    DeMaria, R., Lenti, L., Malisan, F., d’Agostino, F., Tomassini, B., Zeuner, A., Rippo, M.R., Testi, R.: Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 277, 1652–1655 (1997)CrossRefGoogle Scholar
  18. 18.
    Malisan, F., Franchi, L., Tomassini, B., Ventura, N., Condò, I., Rippo, M.R., Rufini, A., Liberati, L., Nachtigall, C., Kniep, B., Testi, R.: Acetylation suppresses the proapoptotic activity of GD3 ganglioside. J. Exp. Med. 196, 1535–1541 (2002)CrossRefPubMedGoogle Scholar
  19. 19.
    Vater, M., Kniep, B., Gross, H.J., Claus, C., Dippold, W., Schwartz-Albiez, R.: The 9-O-acetylated disialosyl carbohydrate sequence of CDw60 is a marker on activated human B lymphocytes. Immunol. Letters 59, 151–157 (1997)CrossRefGoogle Scholar
  20. 20.
    Claus, C., Gocht, A., Schwartz-Albiez, R., Lünsdorf, H., Kniep, B.: CD60: Specificity of the antibodies, distribution of the antigens, and functional aspects. In: Mason, D. (ed.) Leucocyte Typing VII, pp. 187–188. Oxford University Press, Oxford (2002)Google Scholar
  21. 21.
    Strasser, P., Unger, U., Strobl, B., Vilas, U., Vlasak, R.: Recombinant viral sialate-O-acetylesterases. Glycoconj. J. 20, 551–561 (2004)CrossRefPubMedGoogle Scholar
  22. 22.
    Schwartz-Albiez, R., Dörken, B., Möller, P., Brodin, N.T., Monner, D.A., Kniep, B.: Neutral glycosphingolipids of the globo-series characterize activation stages corresponding to germinal center B cells. Int. Immunol. 2, 929–936 (1990)PubMedGoogle Scholar
  23. 23.
    Corfield, A.P., Wagner, S.A., O’Donell, L.J., Durdey, P., Mountford, R.A., Clamp, J.R.: The roles of enteric bacterial sialidases, sialate O-acetyl esterase and glycosyltransferase in the degradation of human colonic mucin. Glycoconj. J. 10, 72–81 (1993)CrossRefPubMedGoogle Scholar
  24. 24.
    Kamerling, J.P., Schauer, R., Shukla, A.K., Stoll, S., van Halbeek, H., Vliegenhart, J.F.: Migration of O-acetyl groups in N,O-acetylneuraminic acids. Eur. J. Biochem. 162, 601–607 (1987)CrossRefPubMedGoogle Scholar
  25. 25.
    Vandamme-Feldhaus, V., Schauer, R.: Characterization of the enzymatic 7-O-acetylation of sialic acids and evidence for enzymatic O-acetyl migration from C-7 to C-9 in bovine submandibular gland. J. Biochem. 124, 111–121 (1998)PubMedGoogle Scholar
  26. 26.
    Sutherland, D.R., Abdullah, K.M., Cyopick, P., Mellors, A.: Cleavage of the cell-surface O-sialoglycoproteins CD34, CD43, CD44, CD45 by a novel glycoprotease from P.haemolytica. J. Immunol. Meth. 148, 1458–1464 (1992)Google Scholar
  27. 27.
    Dillon, S.R., Mancini, M., Rosen, A., Schlissel, M.S.: Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation. J. Immunol. 164, 1322–1332, (2001)Google Scholar
  28. 28.
    Carthy, C.M., Granville, D.J., Jiang, H., Levy, J.G., Rudin, C.M., Thompson, C.B., McManus, B.M., Hunt, D.W.: Early release of mitochondrial cytochrome c and expression of mitochondrial epitope 7A6 with a porphyrin-derived photosensitizer: Bcl-2 and Bcl-xL overexpression do not prevent early mitochondrial events but still depress caspase activity. Lab. Invest. 79, 953–965 (1999)PubMedGoogle Scholar
  29. 29.
    Cheng, P.C., Cherukuri, A., Dykstra, M., Malapati, S., Sproul, T., Chen, M.R., Pierce, S.K.: Floating the raft hypothesis: The roles of lipid rafts in B cell antigen receptor function. Sem. Immunol. 13, 107–114 (2001)CrossRefGoogle Scholar
  30. 30.
    Pierce, S.K.: Lipid rafts and B cell activation. Nat. Rev. Immunol. 2, 96–105 (2002)CrossRefPubMedGoogle Scholar
  31. 31.
    Hsueh, R.C., Scheuermann, R.H.: Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv. Immunol. 75, 283–316 (2000)PubMedCrossRefGoogle Scholar
  32. 32.
    Nave, H., Gerbert, A., Pabst, R.: Morphology and immunology of the human palatine tonsil. Anat. Embryol. 204, 367–373 (2001)CrossRefPubMedGoogle Scholar
  33. 33.
    Bergler, W., Adam, S., Gross, H.J., Hörmann, K., Schwartz-Albiez, R.: Age-dependent altered proportions in subpopulations of tonsillar lymphocytes. Clin. Exp. Immunol. 116, 9–18 (1999)CrossRefPubMedGoogle Scholar
  34. 34.
    Rieber, E.P., Kniep, B., Rank, G.: A membrane-protein-associated oligosaccharide defining functional T-cell subsets. In: Knapp, W. et al. (eds.) Leucocyte Typing IV, pp. 366–368. Oxford University Press, Oxford (1989)Google Scholar
  35. 35.
    Defrance, T., Casamayor-Palleja, M., Krammer, P.H.: The life and death of a B cell. Adv. Cancer Res. 86, 195–225 (2002)PubMedCrossRefGoogle Scholar
  36. 36.
    Kniep, B., Kniep, E., Özkucur, N., Barz, S., Bachmann, M., Malisan, F., Testi, R., Rieber, E.P.: 9-O-acetyl GD3 protects tumor cells from apoptosis. Int. J. Cancer, 119(1), 67–73 (2006)CrossRefPubMedGoogle Scholar
  37. 37.
    Giammarioloi, A.M., Garofano, T., Sorice, M., Misasi, R., Gambardella, L., Gradini, R., Fais, S., Pavan, A., Malori, W.: GD3 glycosphingolipid contributes to Fas-mediated apoptosis via association with ezrin cytoskeletal protein. FEBS Lett. 506, 45–50 (2001)CrossRefGoogle Scholar
  38. 38.
    Mori, T., Kiyokawa, N., Katagiri, Y.U., Taguchi, T., Suzuki, T., Sekino, T., Sato, N., Ohmi, K., Nakajima, H., Takeda, T., Fujimoto, J.: Globotriaosyl ceramide (CD77/Gb3) in the glycolipid-enriched membrane domain participates in B-cell receptor-mediated apoptosis by regulating lyn kinase activity in human B cells. Exp. Hematol. 28, 1260–1268 (2000)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Michael Erdmann
    • 1
  • Dirk Wipfler
    • 1
  • Anette Merling
    • 1
  • Yi Cao
    • 1
  • Christine Claus
    • 2
  • Bernhard Kniep
    • 3
  • Haneen Sadick
    • 4
  • Wolfgang Bergler
    • 5
  • Reinhard Vlasak
    • 6
  • Reinhard Schwartz-Albiez
    • 1
    • 7
  1. 1.Tumor Immunology Program, German Cancer Research CenterHeidelbergGermany
  2. 2.Department of Cardiothoracic and Vascular SurgeryUniversity Hospital MainzMainzGermany
  3. 3.Institute of ImmunologyTechnical University of DresdenDresdenGermany
  4. 4.Department of Oto-Rhino-LaryngologyUniversity of MannheimMannheimGermany
  5. 5.St. Joseph HospitalBremenGermany
  6. 6.Applied Biotechnology, Department of Cell BiologyUniversity SalzburgSalzburgAustria
  7. 7.German Cancer Research CenterHeidelbergGermany

Personalised recommendations