Glycoconjugate Journal

, Volume 23, Issue 3–4, pp 175–187 | Cite as

Apoptosis of human breast carcinoma cells in the presence of cis-platin and L-/D-PPMP: IV. Modulation of replication complexes and glycolipid: Glycosyltransferases

  • Patrick J. Boyle
  • Rui Ma
  • Narendra Tuteja
  • Sipra Banerjee
  • Subhash Basu


Apoptosis of human breast carcinoma cells (SKBR-3, MCF-7, and MDA-468) has been observed after treatment of these cells with anti-cancer drug cis-platin and glycosphingolipid biosynthesis inhibitor L- and D-PPMP, respectively. These drugs initiated apoptosis in a dose-dependent manner as measured by phenotypic morphological changes, by binding of a fluorescent phophatidyl serine-specific dye (PSS-380) onto the outer leaflet of the cell membranes, and by activation of caspases, −3, −8, and −9. It was observed that in two hours very little apoptotic process had started but predominant biochemical changes occurred after 6 h. DNA degradation started after 24 hours of drug treatment. However, very little is known about the stability of the ‘`Replication Complexes’’ during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during its replication, repair, and recombination processes. Previously, DNA helicase-III was characterized as a component of the replication complexes isolated from embryonic chicken brains as well as breast and colon carcinoma cells. Helicase activities were measured by a novel method (ROME assay), and DNA polymerase-α activities were determined by regular chain extension of the nicked ACT-DNA, by determining values obtained from +/− aphidicolin-treated incubation mixtures. In all three breast carcinoma cell lines, a common trend was observed: a decrease of activities of DNA polymerase-α and Helicase III. A sharp decrease of activities of the glycolipid sialyltransferases: SAT-2 (CMP-NeuAc; GD3 α2-8 sialyltransferase) and SAT-4 (CMP-NeuAc: GM1a α2-3 sialyltransferase) was observed in the apoptotic carcinoma cells treated with L-PPMP compared with cis-platin.


Apoptosis Anti-cancer drugs Carcinoma cells cis-platin Caspase-3 Caspase-9 DNA polymerase-α Helicase-III GD3 ganglioside GD1a ganglioside D-PPMP L-PPMP SAT-2 SAT-3 SAT-4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wyllie, A.H.: Apoptosis: cell death in tissue regulation. J. Pathol. 153, 313–316 (1987)CrossRefPubMedGoogle Scholar
  2. 2.
    Arends, M.J., Wyllie, A.H.: Apoptosis: mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 32, 223–254 (1991)PubMedGoogle Scholar
  3. 3.
    Wajant, H.: The Fassignaling pathway: more than a paradigm. Science, 296, 1635–6 (2002)CrossRefPubMedGoogle Scholar
  4. 4.
    Strasser, A., O’Connor, L., Dixit, V.M.: Apoptosis signaling. Annu. Rev. Biochem. 69, 217–245 (2000)CrossRefPubMedGoogle Scholar
  5. 5.
    Couldwell, W.T., Hinton, D.R., He, S., Chen, T.C., Sebat, I., Weiss, M.H., Law, R.E.: Protein kinaseC inhibitors induce apoptosis in human malignant glioma cell lines. FEBS Lett. 345, 43–46 (1994)CrossRefPubMedGoogle Scholar
  6. 6.
    Issandou, M., Faucher, C., Bayard, F., Darbon, J.M.: Opposite effectsof tamoxifen on in vitro protein kinase C activity and endogenous protein phosphorylation in intact MCF-7 cells. Cancer Res. 50, 5845–5850 (1990)PubMedGoogle Scholar
  7. 7.
    Pisha, E., Chai, H., Lee, I.S., Chagwedera, T.E., Farnsworth, N.R., Cordell, G.A., Beecher, C.W., Fong, H.H., Kinghorn, A.D., Brown, D.M., et al.: Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat. Med. 1, 1046–51 (1995)CrossRefPubMedGoogle Scholar
  8. 8.
    Ritke, M.K., Rusnak, J.M., Lazo, J.S., Allan, W.P., Dive, C., Heer, S., Yalowich, J.C.: Differential inductionof etoposide-mediated apoptosis in human leukemia HL-60 and K562 cells. Mol. Pharmacol. 46, 605–611 (1994)PubMedGoogle Scholar
  9. 9.
    Schmidt, M.L., Kuzmanoff, K.L., Ling-Indeck, L., Pezzuto, J.M.: Betulinic acid induces apoptosis in human neuroblastoma cell lines. Eur. J. Cancer 33, 2007–2010 (1997)CrossRefPubMedGoogle Scholar
  10. 10.
    Cifone, M.G., Roncaioli, P., De Maria, R., Camarda, G., Santoni, A., Ruberti, G., Testi, R.: Multiple pathwaysoriginate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. Embo. J. 14, 5859–5868 (1995)PubMedGoogle Scholar
  11. 11.
    Bharti, A.C., Singh, S.M.: Induction ofapoptosis in bone marrow cells by gangliosides produced by a T cell lymphoma. Immunol. Lett. 72, 39–48 (2000)CrossRefPubMedGoogle Scholar
  12. 12.
    Colell, A., Morales, A., Fernandez-Checa, J.C., Garcia-Ruiz, C.: Ceramide generatedby acidic sphingomyelinase contributes to tumor necrosis factor-alpha-mediated apoptosis in human colon HT-29 cells through glycosphingolipids formation. Possible role of ganglioside GD3. FEBS Lett. 526, 135–141 (2002)CrossRefPubMedGoogle Scholar
  13. 13.
    Malisan, F., Testi, R.: GD3 in cellular ageing and apoptosis. Exp. Gerontol. 37, 1273–1282 (2002)CrossRefPubMedGoogle Scholar
  14. 14.
    Paris, R., Morales, A., Coll, O., Sanchez-Reyes, A., Garcia-Ruiz, C., Fernandez-Checa, J.C.: Ganglioside GD3 sensitizes human hepatoma cells to cancer therapy. J. Biol. Chem. 277, 49870–49876 (2002)CrossRefPubMedGoogle Scholar
  15. 15.
    Watanabe, R., Ohyama, C., Aoki, H., Takahashi, T., Satoh, M., Saito, S., Hoshi, S., Ishii, A., Saito, M., Arai, Y.: Ganglioside G(M3) overexpression induces apoptosis and reduces malignant potential in murine bladder cancer. Cancer Res. 62, 3850–3854 (2002)PubMedGoogle Scholar
  16. 16.
    Simon, B.M., Malisan, F., Testi, R., Nicotera, P., Leist, M.: Disialoganglioside GD3 is released by microglia and induces oligodendrocyte apoptosis. Cell. Death. Differ. 9, 758–767 (2002)CrossRefPubMedGoogle Scholar
  17. 17.
    Copani, A., Melchiorri, D., Caricasole, A., Martini, F., Sale, P., Carnevale, R., Gradini, R., Sortino, M.A., Lenti, L., De Maria, R., Nicoletti, F.: Beta-amyloid-induced synthesis of the ganglioside GD3 is a requisite for cell cycle reactivation and apoptosis in neurons. J. Neurosci. 22, 3963–3968 (2002)PubMedGoogle Scholar
  18. 18.
    Kristal, B.S., Brown, A.M.: Apoptogenic gangliosideGD3 directly induces the mitochondrial permeability transition. JBiol. Chem. 274, 23169–23175 (1999)CrossRefGoogle Scholar
  19. 19.
    Scorrano, L., Petronilli, V., Di Lisa, F., Bernardi, P.: Commitment toapoptosis by GD3 ganglioside depends on opening of the mitochondrial permeability transition pore. J. Biol. Chem. 274, 22581–22585 (1999)CrossRefPubMedGoogle Scholar
  20. 20.
    Rippo, M.R., Malisan, F., Ravagnan, L., Tomassini, B., Condo, I., Costantini, P., Susin, S.A., Rufini, A., Todaro, M., Kroemer, G., Testi, R.: GD3 ganglioside directly targets mitochondria in a bcl-2-controlled fashion. Faseb. J. 14, 2047–2054 (2000)CrossRefPubMedGoogle Scholar
  21. 21.
    Kristal, B.S., Brown, A.M.: Ganglioside GD3, the mitochondrial permeability transition, and apoptosis. Ann. N. Y. Acad. Sci. 893, 321–324 (1999)CrossRefPubMedGoogle Scholar
  22. 22.
    Morales, A., Colell, A., Mari, M., Garcia-Ruiz, C., Fernandez-Checa, J.C.: Glycosphingolipids andmitochondria: role in apoptosis and disease. Glycoconj. J. 20, 579–588 (2004)CrossRefPubMedGoogle Scholar
  23. 23.
    Ma, R., Koulov, A., Moulton, C., Basu, M., Banerjee, S., Goodson, H., Basu, S.: Apoptosis ofhuman breast carcinoma cells in the presence of disialosyl gangliosides: II. Treatment of SKBR3 cells with GD3 and GD1b gangliosides. Glycoconj. J. 20, 319–330 (2004)CrossRefPubMedGoogle Scholar
  24. 24.
    Hannun, Y.A., Luberto, C., Argraves, K.M.: Enzymes ofsphingolipid metabolism: from modular to integrative signaling. Biochemistry 40, 4893–4903 (2001)CrossRefPubMedGoogle Scholar
  25. 25.
    Pettus, B.J., Chalfant, C.E., Hannun, Y.A.: Ceramide inapoptosis: an overview and current perspectives. Biochim. Biophys. Acta. 1585, 114–125 (2002)PubMedGoogle Scholar
  26. 26.
    Tilly, J.L., Kolesnick, R.N.: Sphingolipids, apoptosis, cancer treatments and the ovary: investigating a crime against female fertility. Biochim. Biophys. Acta. 1585, 135–138 (2002)PubMedGoogle Scholar
  27. 27.
    Cuvillier, O.: Sphingosine inapoptosis signaling. Biochim. Biophys. Acta. 1585, 153–162 (2002)PubMedGoogle Scholar
  28. 28.
    Radin, N.S.: Killing tumoursby ceramide-induced apoptosis: a critique of available drugs. Biochem. J. 371, 243–256 (2003)CrossRefPubMedGoogle Scholar
  29. 29.
    Bieberich, E., Hu, B., Silva, J., MacKinnon, S., Yu, R.K., Fillmore, H., Broaddus, W.C., Ottenbrite, R.M.: Synthesis andcharacterization of novel ceramide analogs for induction of apoptosis in human cancer cells. Cancer Lett. 181, 55–64 (2002)CrossRefPubMedGoogle Scholar
  30. 30.
    Okazaki, T., Bell, R.M., Hannun, Y.A.: Sphingomyelin turnoverinduced by vitamin D3 in HL-60 cells. Role in cell differentiation. J. Biol. Chem. 264, 19076–19080 (1989)PubMedGoogle Scholar
  31. 31.
    Okazaki, T., Bielawska, A., Bell, R.M., Hannun, Y.A.: Role ofceramide as a lipid mediator of 1 alpha, 25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J. Biol. Chem. 265, 15823–15831 (1990)PubMedGoogle Scholar
  32. 32.
    Basu, S., Ma, R., Mikulla, B., Bradley, M., Moulton, C., Basu, M., Banerjee, S., Inokuchi, J.: Apoptosis ofhuman carcinoma cells in the presence of inhibitors of glycosphingolipid biosynthesis: I. Treatment of Colo-205 and SKBR3 cells with isomers of PDMP and PPMP. Glycoconj. J. 20, 157–168 (2004)CrossRefPubMedGoogle Scholar
  33. 33.
    Kolesnick, R.N.: Sphingomyelin andderivatives as cellular signals. Prog. Lipid. Res. 30, 1–38 (1991)CrossRefPubMedGoogle Scholar
  34. 34.
    Basu, M., Kelly, P., Girzadas, M., Li, Z., Basu, S.: Properties ofanimal ceramide glycanases. Methods. Enzymol. 311, 287–297 (2000)PubMedGoogle Scholar
  35. 35.
    Dastgheib, S., Basu, S.S., Li, Z., Basu, M., Basu, S.: Analyses ofglycosphingolipids using clam, Mercenaria mercenaria, ceramide glycanase. Methods. Enzymol. 312, 196–205 (2000)PubMedGoogle Scholar
  36. 36.
    Basu, M., Kelly, P., O’Donnell, P., Miguel, M., Bradley, M., Sonnino, S., Banerjee, S., Basu, S.: Ceramide glycanaseactivities in human cancer cells. Biosci. Rep. 19, 449–460 (1999)CrossRefPubMedGoogle Scholar
  37. 37.
    Spiegel, S., Milstien, S.: Functions ofa new family of sphingosine-1-phosphate receptors. Biochim. Biophys. Acta. 1484, 107–116 (2000)PubMedGoogle Scholar
  38. 38.
    Igarashi, Y.: Functional rolesof sphingosine, sphingosine 1-phosphate, and methylsphingosines: in regard to membrane sphingolipid signaling pathways. J. Biochem. (Tokyo) 122, 1080–1087 (1997)Google Scholar
  39. 39.
    Kerr, J.F., Wyllie, A.H., Currie, A.R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 26, 239–257 (1972)PubMedGoogle Scholar
  40. 40.
    Cohen, G., Sun, X., Fearnhead, H., MacFarlane, M., Brown, D., Snowden, R., Dinsale, D.: Formation oflarge molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J. Immunol., 153, 507–516 (1994)PubMedGoogle Scholar
  41. 41.
    Martin, S., Reutelingsperger, C., McGahon, A., Rader, J., Schie, R.v., LaFace, D., Green, D.: Early redistributionof plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556 (1995)CrossRefPubMedGoogle Scholar
  42. 42.
    Martin, S., Green, D.: Protease activationduring apoptosis: death by a thousand cuts? Cell. 82, 349–352 (1995)CrossRefPubMedGoogle Scholar
  43. 43.
    Wyllie, A.: Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556 (1980)CrossRefPubMedGoogle Scholar
  44. 44.
    Liu, X., Zou, H., Slaughter, C., Wang, X.: DFF, a heterodimeric protein that functions downstream of Caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175–184 (1997)CrossRefPubMedGoogle Scholar
  45. 45.
    Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., Nagata, S., A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998)CrossRefPubMedGoogle Scholar
  46. 46.
    Halenbeck, R., MacDonald, H., Roulston, A., Chen, T., Conroy, L., Williams, L., CPAN, a human nuclease regulated by the caspase-sensitive inhibitor DFF45. Curr. Biol. 8, 537–540 (1998)CrossRefPubMedGoogle Scholar
  47. 47.
    Seki, K., Yoshikawa, H., Shiiki, K., Hamada, Y., Akamatsu, N., Tasaka, K.: Cis-platin (CDDP) specifically induces apoptosis via sequential activation of Caspase-8, -3 and -6 in osteosarcoma. Cancer Chemother Pharmacol. 45, 199–206 (2000)CrossRefPubMedGoogle Scholar
  48. 48.
    Henkels, K.M., Turchi, J.J., Cis-platin-induced apoptosis proceeds by Caspase-3-dependent and – independent pathways in cis-platin-resistant and -sensitive human ovarian cancer cell lines. Cancer Res. 59, 3077–3083 (1999)PubMedGoogle Scholar
  49. 49.
    Tavassoli, M., Soltaninia, J., Rudnicka, J., Mashanyare, D., Johnson, N., Gaken, J.: Tamoxifen inhibits the growth of head and neck cancer cells and sensitizes these cells to cis-platin induced-apoptosis: role of TGF-betal. Carcinogenesis 23, 1569–1575 (2002)CrossRefPubMedGoogle Scholar
  50. 50.
    Rahmouni, A., Leng, M.: Reaction ofnucleic acids with cis-diamminedichloroplatinum (II): interstrand cross-links. Biochemistry 26, 7229–7234 (1987)CrossRefPubMedGoogle Scholar
  51. 51.
    Kelley, T.J., Moghaddas, S., Bose, R., Basu, S.: Inhibition ofimmunopurified DNA polymerase-alpha from PA-3 prostate tumor cells by platinum (II) antitumor drugs. Cancer Biochem. Biophys. 13, 135–146 (1993)PubMedGoogle Scholar
  52. 52.
    Bose, R., Li, D., Kennedy, M., Basu, S.: Facile Formationof cis-Platin Nonapeptide Complex of Human DNA Polymerase-alpha Origin. J. Chem. Soc. Commun. Royal Soc. Chem. 1731–1732 (1995)Google Scholar
  53. 53.
    Bose, R.N., Li, D., Yang, W.W., Basu, S.: NMR structuresof a nonapeptide from DNA binding domain of human polymerase-alpha determined by iterative complete-relaxation-matrix approach. J. Biomol. Struct. Dyn. 16, 1075–1085 (1999)PubMedGoogle Scholar
  54. 54.
    Hiraishi, K., Suzuki, K., Hakomori, S., Adachi, M., Le (y) antigen expression is correlated with apoptosis (programmed cell death). Glycobiology 3, 381–390 (1993)PubMedGoogle Scholar
  55. 55.
    Basu, S., Ma, R., Boyle, P.J., Mikulla, B., Bradley, M., Smith, B., Basu, M., Banerjee, S.: Apoptosis ofhuman carcinoma cells in the presence of potential anti-cancer drugs: III. Treatment of Colo-205 and SKBR3 cells with: cis-platin, Tamoxifen, Melphalan, Betulinic acid, L-PDMP, L-PPMP, and GD3 ganglioside. Glycoconj. J. 20, 563–577 (2004)CrossRefPubMedGoogle Scholar
  56. 56.
    Boubelik, M., Floryk, D., Bohata, J., Draberova, L., Macak, J., Smid F, Draber, P.: Lex glycosphingolipids-mediated cell aggregation. Glycobiology 8, 139–146 (1998)CrossRefPubMedGoogle Scholar
  57. 57.
    Koulov, A.V., Stucker, K.A., Lakshmi, C., Robinson, J.P., Smith, B.D.: Detection ofapoptotic cells using a synthetic fluorescent sensor for membrane surfaces that contain phosphatidylserine. Cell. Death. Differ. 10, 1357–1359 (2003)CrossRefPubMedGoogle Scholar
  58. 58.
    Basu, M., De, T., Das, K.K., Kyle, J.W., Chon, H.C., Schaeper, R.J., Basu, S.: Glycolipids. Methods. Enzymol. 138, 575–607 (1987)PubMedGoogle Scholar
  59. 59.
    Boyle, P.J.: Characterization of DNA Helicase-III in Replication Complexes Isolated from Embryonic Chicken Brain and Breast Carcinoma Cells, in Department of Chemistry and Biochemistry. 2005, University of Notre Dame: Notre Dame, INGoogle Scholar
  60. 60.
    Mullen, O.L., Dodd, M.C., Minton, J.P.: Evaluation ofdye exclusion and colony inhibition techniques for detection of polyoma-specific, cell-mediated immunity. J. Natl. Cancer Inst. 54, 229–231 (1975)PubMedGoogle Scholar
  61. 61.
    Porter, A.G., Janicke, R.U.: Emerging rolesof Caspase-3 in apoptosis. Cell. Death. Differ. 6, 99–104 (1999)CrossRefPubMedGoogle Scholar
  62. 62.
    Kumar, S.: Mechanisms mediatingcaspase activation in cell death. Cell. Death. Differ. 6, 1060–1066 (1999)CrossRefPubMedGoogle Scholar
  63. 63.
    Nunez, G., Benedict, M.A., Hu, Y., Inohara, N., Caspases: the proteases of the apoptotic pathway. Oncogene 17, 3237–3245 (1998)CrossRefPubMedGoogle Scholar
  64. 64.
    Hearps, A.C., Burrows, J., Connor, C.E., Woods, G.M., Lowenthal, R.M., Ragg, S.J.: Mitochondrial cytochromec release precedes transmembrane depolarisation and Caspase-3 activation during ceramide-induced apoptosis of Jurkat T cells. Apoptosis 7, 387–394 (2002)CrossRefPubMedGoogle Scholar
  65. 65.
    Chandra, J., Kaufmann, S.H.: Apoptotic pathways in cancer progression and treatment in Signal Transduction and Human Disease, 143–170 (2003); John Wiley and Sons, New Jersey Ekert, P.G., Silke, J., Vaux, D.L.: Caspase inhibitors. Cell. Death. Differ. 6, 1081–1086 (1999)CrossRefGoogle Scholar
  66. 66.
    Stennicke, H.R., Salvesen, G.S.: Catalytic propertiesof the caspases. Cell. Death. Differ. 6, 1054–1059 (1999)CrossRefPubMedGoogle Scholar
  67. 67.
    Thornberry, N.A., Lazebnik, Y.: Caspases: enemies within. Science 281, 1312–1316 (1998)CrossRefPubMedGoogle Scholar
  68. 68.
    Volckova, E., Dudones, L.P., Bose, R.N.: HPLC determinationof binding of cis-platin to DNA in the presence of biological thiols: implications of dominant platinum-thiol binding to its anticancer action. Pharm. Res. 19, 124–131 (2002)CrossRefPubMedGoogle Scholar
  69. 69.
    Tuteja, N., Rahma, K., Tuteja, R., Ochem, A., Skopac, D., Falaschi, A.: DNA helicase III from HeLa cells: an enzyme that acts preferentially on partially unwound DNA duplexes. Nucleic Acids Res. 20, 5329–5337 (1992)PubMedGoogle Scholar
  70. 70.
    Peyrone, M.: Ueber dieEinwirkung des Ammoniaks auf Platinchlorur. Ann. Chem. Pharm. 51, 1–29 (1844)Google Scholar
  71. 71.
    Rosenberg, B., Vancamp, L., Krigas, T.: Inhibition Of Cell Division In Escherichia Coli By Electrolysis Products From A Platinum Electrode. Nature 205, 698– 699 (1965)PubMedGoogle Scholar
  72. 72.
    Rosenberg, B., VanCamp, L., Trosko, J.E., Mansour, V.H., Platinum compounds: a new class of potent antitumour agents. Nature 222, 385–386 (1969)PubMedGoogle Scholar
  73. 73.
    Pinto, A.L., Lippard, S.J.: Binding ofthe antitumor drug cis-diamminedichloroplatinum (II) (cis-platin) to DNA. Biochim. Biophys. Acta. 780, 167–180 (1985)PubMedGoogle Scholar
  74. 74.
    Bose, R.N., Li, D., Kennedy, M., Basu, S.: Facile Formationof cis-platin Nonapeptide Complex of Human DNA Polymerase-a Origin. J. Chem. Soc. Commun. Royal Soc. Chem. 1731–1732 (1995)Google Scholar
  75. 75.
    Volckova, E., Evanics, F., Yang, W.W., Bose, R.N.: Unwinding of DNA polymerases by the antitumor drug, cis-diamminedichloroplatinum (II). Chem. Commun. (Camb), 1128–1129 (2003)Google Scholar
  76. 76.
    Rossi, D., Gaidano, G.: Messengers ofcell death: apoptotic signaling in health and disease. Haematologica 88, 212–218 (2003)PubMedGoogle Scholar
  77. 77.
    Fredman, P., Nilsson, O., Svennerholm, L., Myrvold, H., Persson, B., Pettersson, S., Holmgren, J., Lindholm, L.: Colorectal carcinomashave a characteristic ganglioside pattern. Med. Biol. 61, 45–48 (1983)PubMedGoogle Scholar
  78. 78.
    Wikstrand, C.J., Fredman, P., McLendon, R.R., Svennerholm, L., Bigner, D.D.: Altered expressionof ganglioside phenotypes of human gliomas in vivo and in vitro. Mol. Chem. Neuropathol. 21, 129–138 (1994)PubMedCrossRefGoogle Scholar
  79. 79.
    Thomas, C.P., Buronfosse, A., Fertil, B., Portoukalian, J.: Surface expressionof GD3 disialogangliosides in human melanoma cells is correlated to both metastatic potential in vivo and radiosensitivity in vitro. C. R. Acad. Sci. III, 318, 1233–1238 (1995)PubMedGoogle Scholar
  80. 80.
    Marquina, G., Waki, H., Fernandez, L.E., Kon, K., Carr, A., Valiente, O., Perez, R., Ando, S.: Gangliosides expressedin human breast cancer. Cancer Res. 56, 5165–5171 (1996)PubMedGoogle Scholar
  81. 81.
    Magnani, J.L., Nilsson, B., Brockhaus, M., Zopf, D., Steplewski, Z., Koprowski, H., Ginsburg, V.: A monoclonalantibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J. Biol. Chem. 257, 14365–14369 (1982)PubMedGoogle Scholar
  82. 82.
    Kannagi, R., Izawa, M., Koike, T., Miyazaki, K., Kimura, N.: Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 95, 377–384 (2004)CrossRefPubMedGoogle Scholar
  83. 83.
    Zeisig, R., Stahn, R., Wenzel, K., Behrens, D., Fichtner, I.: Effect ofsialyl Lewis X-glycoliposomes on the inhibition of E-selectin-mediated tumour cell adhesion in vitro. Biochim. Biophys. Acta. 1660, 31–40 (2004)PubMedGoogle Scholar
  84. 84.
    Magnani, J.L.: The discovery, biology, and drug development of sialyl Lea and sialyl Lex. Arch. Biochem. Biophys. 426, 122–131 (2004)CrossRefPubMedGoogle Scholar
  85. 85.
    Basu S.: The serendipity of ganglioside biosynthesis: pathways to CARS and HY-CARS glycosyltrnsferases. Glycobiology 1, 469–475 (1991)PubMedGoogle Scholar
  86. 86.
    Basu, M., Hawes, J., Li, Z., Ghosh, S., Khan, F.A., Zhang, B.J., Basu, S., Basu, M.: Biosynthesis in vitro of SA-LeX and SA-diLeX by al-3 fucosyltransferases from colon carcinoma and embryonic brain tissues. Glycobiology 1, 527–535 (1991)PubMedGoogle Scholar
  87. 87.
    Basu, S., Basu, M., Dastgheib, S., Hawes, J.W.: Biosynthesis andregulation of glycosphingolipids in “Comprehensive Natural Products Chemistry” (eds. D. Barton, K. Nakanishi, O. Meth-Cohen, and B.M. Pinto), Vol-3. Pergamon Press, New York 107–128 (1999)Google Scholar
  88. 88.
    Basu, S., Kaufman, B., Roseman, S.: Conversion ofTay-Sachs ganglioside to monosialoganglioside by brain uridine diphosphoate D-galactose:glycolipid galactosyltransferase. J. Biol. Chem. 240, 4114–4117 (1965)Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Patrick J. Boyle
    • 1
  • Rui Ma
    • 1
  • Narendra Tuteja
    • 2
  • Sipra Banerjee
    • 3
  • Subhash Basu
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  2. 2.Plant and Molecular BiologyInternational Center for Genetic Engineering & Biotechnology (ICGEB)New DelhiIndia
  3. 3.Department of Cancer BiologyCleveland Clinic FoundationClevelandUSA

Personalised recommendations