Glycoconjugate Journal

, Volume 23, Issue 7–8, pp 543–554 | Cite as

Comparative characterisation of recombinant invertebrate and vertebrate peptide O-Xylosyltransferases

  • Andrea Brunner
  • Daniel Kolarich
  • Josef Voglmeir
  • Katharina Paschinger
  • Iain B. H. Wilson


Chondroitin and heparan sulphates have key functions in animal development and their synthesis is initiated by the action of UDP-α-D-xylose:proteoglycan core protein β-D-xylosyltransferase (EC cDNAs encoding this enzyme have been previously cloned from mammalian species; this in turn facilitated identification of corresponding Caenorhabditis elegans (sqv-6) and Drosophila melanogaster (oxt) genes. In the present study, we report the expression in Pichia pastoris and subsequent assay using either MALDI-TOF MS or RP-HPLC of recombinant forms of the Caenorhabditis xylosyltransferase SQV-6 and the human xylosyltransferase I, in addition to extending our previous studies on the xylosyltransferase from Drosophila. The enzyme activities were tested with a number of peptide substrates based on portions of the human bikunin, human perlecan and Drosophila syndecan core peptides. Whereas a variant of the latter, containing two Ser-Gly motifs was only modified on one of these motifs, the perlecan peptide with three Ser-Gly motifs could be multiply modified in vitro. Using this substrate, we could for the first time follow, by mass spectrometry, the xylosylation of a peptide with multiple xylosyltransferase acceptor motifs.


Xylosyltransferase Glycosaminoglycan 



electrospray ionisation


matrix-assisted laser desorption/ionisa- tion time-of-flight spectrometry


reversed phase HPLC


Drosophila peptide O-xylosyltransfer- ase


Caenorhabditis squashed vulva 6 gene product or peptide O-xylosyltransfease


human xylosyltransferase I


human xylosyltransferase II


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Selleck, S.B.: Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends. Genet. 16, 206–12 (2000)PubMedCrossRefGoogle Scholar
  2. 2.
    Duncan, G., McCormick, C., Tufaro, F.: The link between heparan sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins. J. Clin. Invest. 108, 511–6 (2001)PubMedCrossRefGoogle Scholar
  3. 3.
    Hwang, H.Y., Olson, S.K., Esko, J.D., Horvitz, H.R.: Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature 423, 439–43 (2003)PubMedCrossRefGoogle Scholar
  4. 4.
    Wang, H., Spang, A., Sullivan, M.A., Hryhorenko, J., Hagen, F.K.: The Terminal Phase of Cytokinesis in the Caenorhabditis elegans Early Embryo Requires Protein Glycosylation. Mol. Cell. Biol. 16, 4202–13 (2005)CrossRefGoogle Scholar
  5. 5.
    Nakamura, Y., Haines, N., Chen, J., Okajima, T., Furukawa, K., Urano, T., Stanley, P., Irvine, K.D., Furukawa, K.: Identification of a Drosophila gene encoding xylosylprotein β4-galactosyltransferase that is essential for the synthesis of glycosaminoglycans and for morphogenesis. J. Biol. Chem. 277, 46280–8 (2002)PubMedCrossRefGoogle Scholar
  6. 6.
    Kjellén, L., Lindahl, U.: Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443–75 (1991)PubMedCrossRefGoogle Scholar
  7. 7.
    Wilson, I.B.H.: The never-ending story of peptide O-xylosyl- transferase. Cell. Mol. Life Sci. 61, 794–809 (2004)PubMedCrossRefGoogle Scholar
  8. 8.
    Stoolmiller, A.C., Horwitz, A.L., Dorfman, A.: Biosynthesis of the chondroitin sulfate proteoglycan. Purification and properties of xylosyltransferase. J. Biol. Chem. 247, 3525–32 (1972)PubMedGoogle Scholar
  9. 9.
    Kuhn, J., Götting, C., Schnölzer, M., Kempf, T., Brinkmann, T., Kleesiek, K.: First isolation of human UDP-D-xylose: proteoglycan core protein β-D-xylosyltransferase secreted from cultured JAR choriocarcinoma cells. J. Biol. Chem. 276, 4940–7 (2001)PubMedCrossRefGoogle Scholar
  10. 10.
    Götting, C., Kuhn, J., Zahn, R., Brinkmann, T., Kleesiek, K.: Molecular cloning and expression of human UDP- D-Xylose:proteoglycan core protein β- D-xylosyltransferase and its first isoform XT-II. J. Mol. Biol. 304, 517–28 (2000)PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson, I.B.H.: Functional characterization of Drosophila melanogaster peptide O-xylosyltransferase, the key enzyme for proteoglycan chain initiation and member of the core 2/I N-acetylglucosaminyltransferase family. J. Biol. Chem. 277, 21207–12 (2002)PubMedCrossRefGoogle Scholar
  12. 12.
    Hwang, H.-Y., Olson, S.K., Brown, J.R., Esko, J.D., Horvitz, H.R.: The Caenorhabditis elegans genes sqv-2 and sqv-6, which are required for vulval morphogenesis, encode glycosaminoglycan galactosyltransferase II and xylosyltransferase. J. Biol. Chem. 278, 11735–8 (2003)PubMedCrossRefGoogle Scholar
  13. 13.
    Bar-Peled, M., Griffith, C.L., Doering, T.: Functional cloning and characterization of a UDP-glucuronic acid decarboxylase: The pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis. Proc. Natl. Acad. Sci. USA 98, 12003–8 (2001)PubMedCrossRefGoogle Scholar
  14. 14.
    Paschinger, K., Staudacher, E., Stemmer, U., Fabini, G., Wilson, I.B.H.: Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates. Glycobiol. 15, 463–74 (2005)CrossRefGoogle Scholar
  15. 15.
    Mirgorodskaya, E., Hassan, H., Clausen, H., Roepstorff, P.: Mass spectrometric determination of O-glycosylation sites using β-elimination and partial acid hydrolysis. Anal. Chem. 73, 1263–9 (2001)PubMedCrossRefGoogle Scholar
  16. 16.
    Pfeil, U., Wenzel, K.W.: Purification and some properties of UDP-xylosyltransferase of rat ear cartilage. Glycobiol. 10, 803–7 (2000)CrossRefGoogle Scholar
  17. 17.
    Guillaumond, M., Louisot, P.: Glycoprotein biosynthesis in aortic wall - IV. Study of soluble xylosyl-transferase in intimal cells. Int. J. Biochem. 6, 491–6 (1975)CrossRefGoogle Scholar
  18. 18.
    Stoolmiller, A.C., Horwitz, A.L., Dorfman, A.: Biosynthesis of the chondroitin sulphate proteoglycan. Purification and properties of xylosyltransferase. J. Biol. Chem. 247, 3525–32 (1972)PubMedGoogle Scholar
  19. 19.
    Brinkmann, T., Weilke, C., Kleesiek, K.: Recognition of acceptor proteins by UDP-D-xylose proteoglycan core protein β-D-xylosyltransferase. J. Biol. Chem. 272, 11171–5 (1997)PubMedCrossRefGoogle Scholar
  20. 20.
    Sasaki, T., Costell, M., Mann, K., Timpl, R.: Inhibition of glycosaminoglycan modification of perlecan domain I by site-directed mutagenesis changes protease sensitivity and laminin-1 binding activity. FEBS Lett. 435, 169–72 (1998)PubMedCrossRefGoogle Scholar
  21. 21.
    Kokenyesi, R., Silbert, J.E.: Formation of heparan sulfate or chondroitin/dermatan sulfate on recombinant domain I of mouse perlecan expressed in Chinese hamster ovary cells. Biochem. Biophys. Res. Commun. 211, 262–7 (1995)PubMedCrossRefGoogle Scholar
  22. 22.
    Müller, S., Disse, J., Schöttler, M., Schön, S., Prante, C., Brinkmann, T., Kuhn, J., Kleesiek, K., Götting, C.: Human xylosyltransferase I and N-terminal truncated forms: functional characterization of the core enzyme. Biochem. J. 394, 163–71 (2006)PubMedCrossRefGoogle Scholar
  23. 23.
    Trombetta, S.E., Parodi, A.J.: Purification to apparent homogeneity and partial characterization of rat liver UDP-glucose:glycoprotein glucosyltransferase. J. Biol. Chem. 267, 9236–40 (1992)PubMedGoogle Scholar
  24. 24.
    Oppenheimer, C.L., Hill, R.L.: Purification and characterization of a rabbit liver α1→3 mannoside β1→2 N-acetylgluco- saminyltransferase. J. Biol. Chem. 256, 799–804 (1981)PubMedGoogle Scholar
  25. 25.
    Kuhn, J., Müller, S., Schnölzer, M., Kempf, T., Schön, S., Brinkmann, T., Schöttler, M., Götting, C., Kleesiek, K.: High-level expression and purification of human xylosyltransferase I in High Five insect cells as biochemically active form. Biochem. Biophys. Res. Commun. 312, 537–44 (2003)PubMedCrossRefGoogle Scholar
  26. 26.
    Götting, C., Müller, S., Schöttler, M., Schön, S., Prante, C., Brinkmann, T., Kuhn, J., Kleesiek, K.: Analysis of the DXD motifs in human xylosyltransferase I required for enzyme activity. J. Biol. Chem. 279, 42566–73 (2004)PubMedCrossRefGoogle Scholar
  27. 27.
    Yamada, S., Okada, Y., Ueno, M., Iwata, S., Deepa, S.S., Nishimura, S., Fujita, M., van Die, I., Hirabayashi, Y., Sugahara, K.: Determination of the glycosaminoglycan-protein linkage region oligosaccharide structures of proteoglycans from Drosophila melanogaster and Caenorhabditis elegans. J. Biol. Chem. 277, 31877–86 (2002)Google Scholar
  28. 28.
    Moses, J., Oldberg, Å., Cheng, F., Fransson, L.-Å.: Biosynthesis of the proteoglycan decorin: transient 2-phosphorylation of xylose during formation of the trisaccharide linkage region. Eur. J. Biochem. 248, 521–6 (1997)PubMedCrossRefGoogle Scholar
  29. 29.
    Gulberti, S., Lattard, V., Fondeur, M., Jacquinet, J.-C., Mulliert, G., Netter, P., Magdalou, J., Ouzzine, M., Fournel-Gigleux, S.: Phosphorylation and sulfation of oligosaccharide substrates critically influence the activity of human β1,4-galactosyltransferase 7 (GalT-I) and β1,3-glucuronosyltransferase I (GlcAT-I) involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J. Biol. Chem. 280, 1417–25 (2005)PubMedCrossRefGoogle Scholar
  30. 30.
    Götting, C., Kuhn, J., Tinneberg, H.-R., Brinkmann, T., Kleesiek, K.: High xylosyltransferase activities in human follicular fluid and cultured granulosa-lutein cells. Mol. Human Reprod. 8, 1079–86 (2002)CrossRefGoogle Scholar
  31. 31.
    Zhang, L., David, G., Esko, J.D.: Repetitive Ser-Gly sequences enhance heparan sulfate assembly in proteoglycans. J. Biol. Chem. 270, 27127–35 (1995)PubMedCrossRefGoogle Scholar
  32. 32.
    Esko, J.D., Zhang, L.: Influence of core protein sequence on glycosaminoglycan assembly. Curr. Opin., Struc. Biol. 6, 663–70 (1996)CrossRefGoogle Scholar
  33. 33.
    Dolan, M., Horchar, T., Rigatti, B., Hassell, J.R.: Identification of sites in domain I of perlecan that regulate heparan sulfate synthesis. J. Biol. Chem. 272, 4316–22 (1997)PubMedCrossRefGoogle Scholar
  34. 34.
    Rogalski, T.M., Williams, B.D., Mullen, G.P., Moerman, D.G.: Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan. Genes. Dev. 7, 1471–84 (1993)PubMedGoogle Scholar
  35. 35.
    Voigt, A., Pflanz, R., Schäfer, U., Jäckle, H.: Perlecan participates in proliferation activation of quiescent Drosophila neuroblasts. Dev. Dyn. 224, 403–12 (2002)PubMedCrossRefGoogle Scholar
  36. 36.
    Pratt, M.R., Hang, H.C., ten Hagen, K.G., Rarick, J., Gerken, T.A., Tabak, L.A., Bertozzi, C.R.: Deconvoluting the functions of polypeptide N-α-acetylgalactosaminyltransferase family members by glycopeptide substrate profiling. Chem. Biol. 11, 1009–16 (2004)PubMedCrossRefGoogle Scholar
  37. 37.
    Kuhn, J., Schnölzer, M., Schön, S., Müller, S., Prante, C., Götting, C., Kleesiek, K.: Xylosyltransferase I acceptor properties of fibroblast growth factor and its fragment bFGF (1–24). Biochem. Biophys. Res. Commun. 333, 156–66 (2005)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Andrea Brunner
    • 1
  • Daniel Kolarich
    • 1
  • Josef Voglmeir
    • 1
  • Katharina Paschinger
    • 1
  • Iain B. H. Wilson
    • 1
  1. 1.Department für Chemie derUniversität für BodenkulturWienAustria

Personalised recommendations