Glycoconjugate Journal

, Volume 23, Issue 5–6, pp 411–421 | Cite as

Oral ingestion of mannose alters the expression level of deaminoneuraminic acid (KDN) in mouse organs

  • Shinji Go
  • Chihiro Sato
  • Kimio Furuhata
  • Ken Kitajima
Original Papers


Deaminoneuraminic acid (KDN) is a unique member of the sialic acid family. We previously demonstrated that free KDN is synthesized de novo from mannose as its precursor sugar in trout testis, and that the amount of intracellular KDN increases in mouse B16 melanoma cells cultured in mannose-rich media [Angata et al. (1999) J. Biol. Chem. 274, 22949–56; Angata et al. (1999) Biochem. Biophys. Res. Commun. 261, 326–31]. In the present study, we first demonstrated a mannose-induced increase in intracellular KDN in various cultured mouse and human cell lines. These results led us to examine whether KDN expression in mouse organs is altered by exogenously administered mannose. Under normal feeding conditions, intracellular free KDN was present at very low levels (19–48 pmol/mg protein) in liver, spleen, and lung, and was not detected in kidney or brain. Oral ingestion of mannose, both short-term (90 min) and long-term (2 wk), resulted in an increase of intracellular KDN up to 60–81 pmol/mg protein in spleen and lung and 6.9–18 pmol/mg protein in kidney and brain; however, no change was observed in liver. The level of KDN in organs appears not to be determined only by the KDN 9-phosphate synthase activity, but might also be affected by other enzymes that utilize mannose 6-phosphate as a substrate as well as the enzymes that breakdown KDN, like KDN-pyruvate lyase. In blood, the detectable amount of free KDN did not change on oral ingestion of mannose. These findings indicate that mannose in the diet affects KDN metabolism in various organs, and provide clues to the mechanism of altered KDN expression in some tumor cells and aged organs.


Biosynthesis of sialic acid Mannose KDN Deaminoneuraminic acid Mannose therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nadano, D., Iwasaki, M., Endo, S., Kitajima, K., Inoue, S., Inoue, Y.: A naturally occurring deaminated neuraminic acid, 3-deoxy-D-glycero-D-galacto-nononic acid (Kdn). J. Biol. Chem. 261, 11550–57 (1986)PubMedGoogle Scholar
  2. 2.
    Inoue, S., Kitajima, K.: Kdn (deaminated neuraminic acid): Dreamful past and future of this newly discovered sialic acid. Glycoconjugate J. (this volume)Google Scholar
  3. 3.
    Angata, T., Varki, A.: Chemical diversity in the sialic acids and related Α-keto acids: an evolutionary perspective. Chem. Rev. 102, 439–69 (2002)PubMedCrossRefGoogle Scholar
  4. 4.
    Inoue, S., Kanamori, A., Kitajima, K., Inoue, Y.: Kdn-glycoprotein: a novel deaminated neuraminic acid-rich glycoprotein isolated from vitelline envelope of rainbow trout eggs. Biochem. Biophys. Res. Commun. 153, 172–6 (1988)PubMedCrossRefGoogle Scholar
  5. 5.
    Song, Y., Kitajima, K., Inoue, S., Inoue, Y.: Isolation and structural elucidation of a novel type of ganglioside, deaminated neuraminic acid (Kdn)-containing glycosphingolipid, from rainbow trout sperm. The first example of the natural occurrence of Kdn-ganglioside, (Kdn)GM3. J. Biol. Chem. 266, 21929–35 (1991)PubMedGoogle Scholar
  6. 6.
    Strecker, G., Wieruszeski, J.M., Michalski, J.C., Alonso, C., Boilly, B., Montreuil, J.: Characterization of LE(x), Le(y) and A Le(y) antigen determinants in Kdn-containing O-linked glycan chains from Pleurodeles waltlii jelly coat eggs. FEBS Lett. 298, 39–43 (1992)PubMedCrossRefGoogle Scholar
  7. 7.
    Kimura, M., Hama, Y., Sumi, T., Asakawa, M., Rao, B.N., Horne, A.P., Li, S.C., Li, Y.T., Nakagawa, H.: Characterization of a deaminated neuraminic acid-containing glycoprotein from the skin mucus of the loach, Misgurnus anguillicaudatus. J. Biol. Chem. 269, 32138–43 (1994)PubMedGoogle Scholar
  8. 8.
    Knirel, Y.A., Kocharova, N.A., Shashkov, A.S., Kochetkov, N.K., Mamontova, V.A., Soloveva, T.F.: Structure of the capsular polysaccharide of Klebsiella ozanae serotype K4 containing 3-deoxy-D-glycero-D-galacto-nonulosonic acid. Carbohydr. Res. 188, 145–55 (1989)PubMedCrossRefGoogle Scholar
  9. 9.
    Shashkov, A.S., Kosmachevskaya, L.N., Streshinskaya, G.M., Evtushenko, L.I., Bueva, O.V., Denisenko, V.A., Naumova, I.B., Stackebrandt, E.: A polymer with a backbone of 3-deoxy-D-glycero- D-galacto-non-2-ulopyranosonic acid, a teichuronic acid, and a beta-glucosylated ribitol teichoic acid in the cell wall of plant pathogenic Streptomyces sp. VKM Ac-2124. Eur. J. Biochem. 269, 6020–25 (2002)PubMedCrossRefGoogle Scholar
  10. 10.
    Inoue, S., Kitajima, K., Inoue, Y.: Identification of 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (Kdn, deaminoneuraminic acid) residues in mammalian tissue and human lung carcinoma cells. Chemical evidence of the occurrence of Kdn glycoconjugates in mammals. J. Biol. Chem. 271, 24341–44 (1996)PubMedCrossRefGoogle Scholar
  11. 11.
    Inoue, S., Lin, S.-L., Chang, T., Wu, S.-H., Yao, C.-W., Chu, T.-Y., Troy, F.A., II, Inoue, Y.: Identification of free deaminated sialic acid (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) in human red blood cells and its elevated expression in fetal cord red blood cells and ovarian cancer cells. J. Biol. Chem. 273, 27199–204 (1998)PubMedCrossRefGoogle Scholar
  12. 12.
    Bulai, T., Bratosin, D., Pons, A., Montreuil, J., Zanetta, J.P.: Diversity of the human erythrocyte membrane sialic acids in relation with blood groups. FEBS Lett. 534, 185–9 (2003)PubMedCrossRefGoogle Scholar
  13. 13.
    Kitajima, K., Kuroyanagi, H., Inoue, S., Ye, J., Troy, F.A., II, Inoue, Y.: Discovery of a new type of sialidase, ‘KDNase,’ which specifically hydrolyzes deaminoneuraminyl (3-deoxy-D-glycerol- D-galacto-2-nonulosonic acid) but not N-acylneuraminyl linkages. J. Biol. Chem. 269, 21415–19 (1994)PubMedGoogle Scholar
  14. 14.
    Angata, T., Kitazume, S., Terada, T., Kitajima, K., Inoue, S., Troy, F.A., II, Inoue, Y.: Identification, characterization, and developmental expression of a novel Α2–8-Kdn-transferase which terminates elongation of Α2–8-linked oligo-polysialic acid chain synthesis in trout egg polysialoglycoproteins. Glycoconjugate J. 11, 493–99 (1994)CrossRefGoogle Scholar
  15. 15.
    Angata, T., Nakata, D., Matsuda, T., Kitajima, K., Troy, F.A., II.: Biosynthesis of Kdn (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid). J. Biol. Chem. 274, 22949–56 (1999)PubMedCrossRefGoogle Scholar
  16. 16.
    Angata, T., Nakata, D., Matsuda, T., Kitajima, K.: Elevated expression of free deaminoneuraminic acid in mammalian cells in mannose-rich media. Biochem. Biophys. Res. Commum. 261, 326–31 (1999)CrossRefGoogle Scholar
  17. 17.
    Companero-Rhodes, M.A., Solis, D., Carrera, E., Cruz, M.J., Diaz-Maurino, T.: Rat liver contains age-regulated cytosolic 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid (Kdn). Glycobiology 9, 527–32 (1999)CrossRefGoogle Scholar
  18. 18.
    Nakamura, M., Furuhata, K., Yamazaki, T., Ogura, H.: Studies on sialic acids. XXV. Synthesis of the Α- and β-N-glycosides of 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (Kdn). Chem. Pharm. Bull. (Tokyo) 39, 3140–44 (1991)Google Scholar
  19. 19.
    Liu, M.-Z., Lee, Y.C.: Comparison of chemical and enzymatic synthesis of 2-acetamido-2-deoxy-D-mannose 6-phosphate: a new approach. Carbohydr. Res. 330, 413–9 (2001)PubMedCrossRefGoogle Scholar
  20. 20.
    Hara, S., Takemori, Y., Yamaguchi, M., Nakamura, M., Ohkura, Y.: Fluorometric high-performance liquid chromatography of N-acetyl- and N-glycolylneuraminic acids and its application to their microdetermination in human and animal sera, glycoproteins, and glycolipids. Anal. Biochem. 164, 138–45 (1987)PubMedCrossRefGoogle Scholar
  21. 21.
    Hara, S., Yamaguchi, M., Takemori, Y., Furuhata, K., Ogura, H., Nakamura, M.: Determination of mono-O-acetylated N-acetylneuraminic acids in human and rat sera by fluorometric high-performance liquid chromatography. Anal. Biochem. 179, 162–6 (1989)PubMedCrossRefGoogle Scholar
  22. 22.
    Hase, S., Ibuki, T., Ikenaka, T.: Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J. Biochem. 95, 197–203 (1984)PubMedGoogle Scholar
  23. 23.
    Davis, J.A., Freeze, H.H.: Studies of mannose metabolism and effects of long-term mannose ingestion in the mouse. Biochim. Biophys. Acta. 1528, 116–26 (2001)PubMedGoogle Scholar
  24. 24.
    Alton, G., Kjaergaard, S., Etchison, J.R., Skovby, F., Freeze, H.H.: Oral ingestion of mannose elevates blood mannose levels: a first step toward a potential therapy for carbohydrate-deficient glycoprotein syndrome type I. Biochem. Mol. Med. 60, 127–33 (1997)PubMedCrossRefGoogle Scholar
  25. 25.
    Alton, G., Hasilik, M., Niehues, R., Panneerselvam, K., Etchison, J.R., Fana, F., Freeze, H.H.: Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology 8, 285–95 (1998)PubMedCrossRefGoogle Scholar
  26. 26.
    Nakata, D., Close, B.E., Colley, K.J., Matsuda, T., Kitajima, K.: Molecular cloning and expression of the mouse N-acetylneuraminic acid 9-phosphate synthase which does not have deaminoneuraminic acid (Kdn) 9-phosphate synthase activity. Biochem. Biophys. Res. Commun. 273, 642–8 (2000)PubMedCrossRefGoogle Scholar
  27. 27.
    Rodriguez, P., Rivas, C.I., Godoy, A., Villanueva, M., Fischbarg, J., Vera, J.C., Reyes, A.M.: Redefining the facilitated transport of mannose in human cells: absence of a glucose-insensitive, high-affinity facilitated mannose transport system. Biochemistry 44, 313–20 (2005)PubMedCrossRefGoogle Scholar
  28. 28.
    Panneerselvam, K., Freeze, H.H., Mannose enters mammalian cells using a specific transporter that is insensitive to glucose, J. Biol. Chem. 271, 9417–21 (1996)PubMedCrossRefGoogle Scholar
  29. 29.
    Cano, M., Calonge, M.L., Peral, M.J., Ilundain, A.A.: A Na+-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells. Pflugers Arch. 441, 686–91 (2001)PubMedCrossRefGoogle Scholar
  30. 30.
    Kean, E.L., Munster-Kuhnel, A.K., Gerardy-Schahn, R.: CMP-sialic acid synthetase of the nucleus. Biochim. Biophys. Acta. 1673, 56–65 (2004)PubMedGoogle Scholar
  31. 31.
    Terada, T., Kitazume, S., Kitajima, K., Inoue, S., Ito, F., Troy, F.A., Inoue, Y.: Synthesis of CMP-deaminoneuraminic acid (CMP-Kdn) using the CTP:CMP-3-deoxynonulosonate cytidylyltransferase from rainbow trout testis. Identification and characterization of a CMP-Kdn synthetase. J. Biol. Chem. 268, 2640–8 (1993)PubMedGoogle Scholar
  32. 32.
    Nakata, D., Münster, A.K., Gerardy-Schahn, R., Aoki, N., Matsuda, T., Kitajima, K.: Molecular cloning of a unique CMP-sialic acid synthetase that effectively utilizes both deaminoneuraminic acid (Kdn) and N-acetylneuraminic acid (Neu5Ac) as substrates. Glycobiology 11, 685–92 (2001)PubMedCrossRefGoogle Scholar
  33. 33.
    Angata, T., Matsuda, T., Kitajima, K.: Synthesis of neoglycoconjugates containing deaminated neuraminic acid (Kdn) using rat liver Α2,6-sialyltransferase. Glycobiology 8, 277–84 (1998)PubMedCrossRefGoogle Scholar
  34. 34.
    Traving, C., Bruse, P., Wachter, A., Schauer, R.: The sialate-pyruvate lyase from pig kidney. Elucidation of the primary structure and expression of recombinant enzyme activity. Eur. J. Biochem. 268, 6473–85 (2001)PubMedCrossRefGoogle Scholar
  35. 35.
    Bulai, T., Bratosin, D., Artenie, V., Montreuil, J.: Characterization of a sialate pyruvate-lyase in the cytosol of human erythrocytes, Biochimie 84, 655–60 (2002)PubMedCrossRefGoogle Scholar
  36. 36.
    Panneerselvam, K., Freeze, H.H.: Mannose corrects altered N-glycosylation in carbohydrate-deficient glycoprotein syndrome fibroblasts. J. Clin. Invest. 97, 1478–87 (1996)PubMedCrossRefGoogle Scholar
  37. 37.
    Alton, G., Kjaergaard, S., Etchison, J.R., Skovby, F., Freeze, H.H.: Oral ingestion of mannose elevates blood mannose levels: a first step toward a potential therapy for carbohydrate-deficient glycoprotein syndrome type I. Biochem. Mol. Med. 60, 127–33 (1997)PubMedCrossRefGoogle Scholar
  38. 38.
    Niehues, R., Hasilik, M., Alton, G., Korner, C., Schiebe-Sukumar, M., Koch, H.G., Zimmer, K.P., Wu, R., Harms, E., Reiter, K., von Figura, K., Freeze, H.H., Harms, H.K., Marquardt, T.: Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J. Clin. Invest. 101, 1414–20 (1998)PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Shinji Go
    • 1
  • Chihiro Sato
    • 1
    • 2
  • Kimio Furuhata
    • 3
  • Ken Kitajima
    • 1
    • 2
  1. 1.Bioscience and Biotechnology CenterGraduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
  2. 2.CREST of Japan Science and Technology CorporationJapan
  3. 3.School of Pharmaceutical Sciences of Kitasato UniversityTokyoJapan

Personalised recommendations