Glycoconjugate Journal

, Volume 23, Issue 1–2, pp 59–72 | Cite as

Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses

  • Raoul J. de Groot


Virus attachment to host cells is mediated by dedicated virion proteins, which specifically recognize one or, at most, a limited number of cell surface molecules. Receptor binding often involves protein-protein interactions, but carbohydrates may serve as receptor determinants as well. In fact, many different viruses use members of the sialic acid family either as their main receptor or as an initial attachment factor. Sialic acids (Sias) are 9-carbon negatively-charged monosaccharides commonly occurring as terminal residues of glycoconjugates. They come in a large variety and are differentially expressed in cells and tissues. By targeting specific Sia subtypes, viruses achieve host cell selectivity, but only to a certain extent. The Sia of choice might still be abundantly present on non-cell associated molecules, on non-target cells (including cells already infected) and even on virus particles themselves. This poses a hazard, as high-affinity virion binding to any of such “false'' receptors would result in loss of infectivity. Some enveloped RNA viruses deal with this problem by encoding virion-associated receptor-destroying enzymes (RDEs). These enzymes make the attachment to Sia reversible, thus providing the virus with an escape ticket. RDEs occur in two types: neuraminidases and sialate-O-acetylesterases. The latter, originally discovered in influenza C virus, are also found in certain nidoviruses, namely in group 2 coronaviruses and in toroviruses, as well as in infectious salmon anemia virus, an orthomyxovirus of teleosts. Here, the structure, function and evolution of viral sialate-O-acetylesterases is reviewed with main focus on the hemagglutinin-esterases of nidoviruses.


Influenza Sialic Acid Cell Surface Molecule Terminal Residue Infectious Salmon Anemia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angata, T., Varki, A.: Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chem. Rev. 102, 439–69 (2002)CrossRefPubMedGoogle Scholar
  2. 2.
    Schauer, R., Kamerling, J.P.: Chemistry, biochemistry and biology of sialic acids. in J. Montreuil, J.F.G. Vliegenthart, H. Schachter, (Eds.), Glycoproteins II, Elsevier Science, 1997, pp. 243– 402.Google Scholar
  3. 3.
    Schauer, R.: Sialic acids: Fascinating sugars in higher animals and man. Zoology 107, 49–64 (2004)CrossRefPubMedGoogle Scholar
  4. 4.
    Herrler, G., Klenk, H.D.: Structure and function of the HEF glycoprotein of influenza C virus. Adv Virus Res 40, 213–34 (1991)PubMedGoogle Scholar
  5. 5.
    Brian, D.A., Hogue, B.G., Kienzle, T.E.: The coronavirus hemagglutinin esterase glycoprotein. in: S.G. Siddell, (Eds.), The Coronaviridae Plenum Press, New York, 1995, pp. 165–179.Google Scholar
  6. 6.
    Hirst, G.K.: Adsorption of influenza hemagglutinins and virus by red blood cells. J. Exp. Med. 76, 195–209 (1942)CrossRefGoogle Scholar
  7. 7.
    Hirst, G.K.: The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science 94, 22–23 (1941)Google Scholar
  8. 8.
    Hirst, G.K.: Receptor destruction by viruses of the mumps-NDV-influenza group. J. Exp. Med. 91, 161–75 (1950)PubMedGoogle Scholar
  9. 9.
    Klenk, E., Faillard, H., Lempfrid, H.: Über die enzymatische Wirkung von Influenzavirus. Hoppe. Seylers. Z. Physiol. Chem. 301, 235–46 (1955)PubMedGoogle Scholar
  10. 10.
    Gottschalk, A.: Neuraminidase: The specific enzyme of influenza virus and Vibrio cholerae. Biochim. Biophys. Acta. 23., 645–646 (1957)CrossRefPubMedGoogle Scholar
  11. 11.
    Hirst, G.K.: The relationship of the receptors of a new strain of virus to those of the mumps-NDV-influenza group. J. Exp. Med. 91, 177–84 (1950)PubMedGoogle Scholar
  12. 12.
    Herrler, G., Rott, R., Klenk, H.D.: Neuraminic acid is involved in the binding of influenza C virus to erythrocytes. Virology 141, 144–7 (1985)CrossRefPubMedGoogle Scholar
  13. 13.
    Kitame, F., Nakamura, K., Saito, A., Sinohara, H., Homma, M.: Isolation and characterization of influenza C virus inhibitor in rat serum. Virus. Res. 3, 231–44 (1985)PubMedGoogle Scholar
  14. 14.
    Kendal, A.P.: A comparison of “influenza C” with prototype myxoviruses: Receptor-destroycing activity (neuraminidase) and structural polypeptides. Virology 65, 87–99 (1975)CrossRefPubMedGoogle Scholar
  15. 15.
    Nerome, K., Ishida, M., Nakayama, M.: Absence of neuraminidase from influenza C virus. Arch. Virol. 50, 241–4 (1976)CrossRefPubMedGoogle Scholar
  16. 16.
    Herrler, G., Rott, R., Klenk, H.D., Müller, H.P., Shukla, A.K., Schauer, R.: The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO. J. 4, 1503–6 (1985)PubMedGoogle Scholar
  17. 17.
    Rogers, G.N., Herrler, G., Paulson, J.C., Klenk, H.D.: Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 261, 5947–51 (1986)PubMedGoogle Scholar
  18. 18.
    Herrler, G., Klenk, H.D.: The surface receptor is a major determinant of the cell tropism of influenza C virus. Virology 159, 102–8 (1987)CrossRefPubMedGoogle Scholar
  19. 19.
    Schauer, R., Reuter, G., Stoll, S.: Posadas del Rio F, Herrler G, Klenk HD, Isolation and characterization of sialate 9(4)-O-acetylesterase from influenza C virus. Biol. Chem. Hoppe. Seyler. 369, 1121–30 (1988)PubMedGoogle Scholar
  20. 20.
    Lamb, R.A., Krug, R.M.: Orthomyxoviridae: He viruses and their replication. in: D.M. Knipe, P.M. Howley, (Eds.), Fields Virology, Lippincott Williams & Wilkins, Philadelphia, 2001, pp. 1487–1531.Google Scholar
  21. 21.
    Vlasak, R., Krystal, M., Nacht, M., Palese, P.: The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology 160, 419–25 (1987)CrossRefPubMedGoogle Scholar
  22. 22.
    Muchmore, E.A., Varki, A.: Selective inactivation of influenza C esterase: A probe for detecting 9-O-acetylated sialic acids. Science 236, 1293–5 (1987)PubMedGoogle Scholar
  23. 23.
    Herrler, G., Dürkop, I., Becht, H., Klenk, H.D.: The glycoprotein of influenza C virus is the haemagglutinin, esterase and fusion factor. J. Gen. Virol. 69, 839–46 (1988)PubMedGoogle Scholar
  24. 24.
    Pekosz, A., Lamb, R.A.: Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA. J. Virol. 73, 8808–12 (1999)PubMedGoogle Scholar
  25. 25.
    Ohuchi, M., Ohuchi, R., Mifune, K.: Demonstration of hemolytic and fusion activities of influenza C virus. J. Virol. 42, 1076–9 (1982)PubMedGoogle Scholar
  26. 26.
    Kitame, F., Sugawara, K., Ohwada, K., Homma, M.: Proteolytic activation of hemolysis and fusion by influenza C virus. Arch. Virol. 73, 357–61 (1982)CrossRefPubMedGoogle Scholar
  27. 27.
    Formanowski, F., Meier-Ewert, H.: Isolation of the influenza C virus glycoprotein in a soluble form by bromelain digestion. Virus. Res. 10, 177–91 (1988)CrossRefPubMedGoogle Scholar
  28. 28.
    Nakada, S., Creager, R.S., Krystal, M., Aaronson, R.P., Palese, P.: Influenza C virus hemagglutinin: Comparison with influenza A and B virus hemagglutinins. J. Virol. 50, 118–24 (1984)PubMedGoogle Scholar
  29. 29.
    Pfeifer, J.B., Compans, R.W.: Structure of the influenza C glycoprotein gene as determined from cloned DNA. Virus. Res. 1, 281–96 (1984)CrossRefPubMedGoogle Scholar
  30. 30.
    Cornelissen, L.A., Wierda, C.M., van der Meer, F.J., Herrewegh, A.A., Horzinek, M.C., Egberink, H.F., de Groot, R.J.: Hemagglutinin-esterase, a novel structural protein of torovirus. J. Virol. 71, 5277–86 (1997)PubMedGoogle Scholar
  31. 31.
    Rosenthal, P.B., Zhang, X., Formanowski, F., Fitz, W., Wong, C.H., Meier-Ewert, H., Skehel, J.J., Wiley, D.C.: Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature 396, 92–6 (1998)PubMedGoogle Scholar
  32. 32.
    Compans, R.W., Bishop, D.H., Meier-Ewert, H.: Structural components of influenza C virions. J. Virol. 21, 658–65 (1977)PubMedGoogle Scholar
  33. 33.
    Herrler, G., Nagele, A., Meier-Ewert, H., Bhown, A.S., Compans, R.W.: Isolation and structural analysis of influenza C virion glycoproteins. Virology 113, 439–51 (1981)CrossRefPubMedGoogle Scholar
  34. 34.
    Hewat, E.A., Cusack, S., Ruigrok, R.W., Verwey, C.: Low resolution structure of the influenza C glycoprotein determined by electron microscopy. J. Mol. Biol. 175, 175–93 (1984)CrossRefPubMedGoogle Scholar
  35. 35.
    Herrler, G., Compans, R.W., Meier-Ewert, H.: A precursor glycoprotein in influenza C virus. Virology 99, 49–56 (1979)CrossRefPubMedGoogle Scholar
  36. 36.
    Vlasak, R., Muster, T., Lauro, A.M., Powers, J.C., Palese, P.: Influenza C virus esterase: Analysis of catalytic site, inhibition, and possible function. J. Virol. 63, 2056–62 (1989)PubMedGoogle Scholar
  37. 37.
    Zhang, X., Rosenthal, P.B., Formanowski, F., Fitz, W., Wong, C.H.: Meier-Ewert H, Skehel JJ, Wiley DC, X-ray crystallographic determination of the structure of the influenza C virus haemagglutinin-esterase-fusion glycoprotein. Acta. Crystallogr. D. Biol. Crystallogr. 55, 945–61 (1999)CrossRefPubMedGoogle Scholar
  38. 38.
    Szepanski, S., Gross, H.J., Brossmer, R., Klenk, H.D., Herrler, G.: A single point mutation of the influenza C virus glycoprotein (HEF) changes the viral receptor-binding activity. Virology 188, 85–92 (1992)CrossRefPubMedGoogle Scholar
  39. 39.
    Matsuzaki, M., Sugawara, K., Adachi, K., Hongo, S., Nishimura, H., Kitame, F., Nakamura, K.: Location of neutralizing epitopes on the hemagglutinin-esterase protein of influenza C virus. Virology 189, 79–87 (1992)CrossRefPubMedGoogle Scholar
  40. 40.
    Umetsu, Y., Sugawara, K., Nishimura, H., Hongo, S., Matsuzaki, M., Kitame, F., Nakamura, K.: Selection of antigenically distinct variants of influenza C viruses by the host cell. Virology 189, 740–4 (1992)CrossRefPubMedGoogle Scholar
  41. 41.
    Marschall, M., Herrler, G., Boswald, C., Foerst, G., Meier-Ewert, H.: Persistent influenza C virus possesses distinct functional properties due to a modified HEF glycoprotein. J. Gen. Virol. 75, 2189–96 (1994)PubMedGoogle Scholar
  42. 42.
    Pleschka, S., Klenk, H.D., Herrler, G.: The catalytic triad of the influenza C virus glycoprotein HEF esterase: Characterization by site-directed mutagenesis and functional analysis. J. Gen. Virol. 76, 2529–37 (1995)PubMedGoogle Scholar
  43. 43.
    Luytjes, W., Bredenbeek, P.J., Noten, A.F., Horzinek, M.C., Spaan, W.J.: Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus. Virology 166, 415–22 (1988)CrossRefPubMedGoogle Scholar
  44. 44.
    Snijder, E.J., den Boon, J.A., Horzinek, M.C., Spaan, W.J.: Comparison of the genome organization of toro- and coronaviruses: Evidence for two nonhomologous RNA recombination events during Berne virus evolution. Virology 180, 448–52 (1991)CrossRefPubMedGoogle Scholar
  45. 45.
    Snijder, E.J., den Boon, J.A., Bredenbeek, P.J., Horzinek, M.C., Rijnbrand, R., Spaan, W.J.: The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related. Nucleic Acids Res. 18, 4535–42 (1990)PubMedGoogle Scholar
  46. 46.
    Gonzalez, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., Enjuanes, L.: A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch. Virol. 148, 2207–35 (2003)PubMedGoogle Scholar
  47. 47.
    Cavanagh, D.: Nidovirales: A new order comprising Coronaviridae and Arteriviridae. Arch. Virol. 142, 629–33 (1997)PubMedGoogle Scholar
  48. 48.
    Spaan, W.J.M., Brian, D.A., Cavanagh, D., de Groot, R.J., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Masters, P., Rottier, P.J.M., Taguchi, F., Talbot, P.J.: Virus Taxonomy; Reports of the International Committee on Taxonomy of Viruses, 8th ed. C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball, (Eds.), Academic Press, 2004, pp. 945–962.Google Scholar
  49. 49.
    Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., Khattra, J., Asano, J.K., Barber, S.A., Chan, S.Y., Cloutier, A., Coughlin, S.M., Freeman, D., Girn, N., Griffith, O.L., Leach, S.R., Mayo, M., McDonald, H., Montgomery, S.B., Pandoh, P.K., Petrescu, A.S., Robertson, A.G., Schein, J.E., Siddiqui, A., Smailus, D.E., Stott, J.M., Yang, G.S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T.F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G.A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R.C., Krajden, M., Petric, M., Skowronski, D.M., Upton, C., Roper, R.L.: The Genome sequence of the SARS-associated coronavirus. Science 300, 1399–404 (2003)CrossRefPubMedGoogle Scholar
  50. 50.
    Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bankamp, B., Maher, K., Chen, M.H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J.L., Chen, Q., Wang, D., Erdman, D.D., Peret, T.C., Burns, C., Ksiazek, T.G., Rollin, P.E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A.D., Drosten, C., Pallansch, M.A., Anderson, L.J., Bellini, W.J.: Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–9 (2003)CrossRefPubMedGoogle Scholar
  51. 51.
    van der Hoek, L., Pyrc, K., Jebbink, M.F.: Vermeulen-Oost W, Berkhout RJM, Wolthers KC, Wertheim-van Dillen PME, Kaandorp J, Spaargaren J, Berkhout B, Identification of a new human coronavirus. Nature Med. 10, 368–373 (2004)PubMedGoogle Scholar
  52. 52.
    Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Poon, R.W., Cai, J.J., Luk, W.K., Poon, L.L., Wong, S.S., Guan, Y., Peiris, J.S., Yuen, K.Y.: Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 79, 884–95 (2005)CrossRefPubMedGoogle Scholar
  53. 53.
    de Vries, A.A.F., Horzinek, M.C., Rottier, P.J.M., de Groot, R.J.: The genome organization of the Nidovirales: Similarities and differences between Arteri-, Toro-, and Coronaviruses. Sem. Virol. 8, 33–47 (1997)Google Scholar
  54. 54.
    Den Boon, J.A., Snijder, E.J., Locker, J.K., Horzinek, M.C., Rottier, P.J.: Another triple-spanning envelope protein among intracellularly budding RNA viruses: The torovirus E protein. Virology 182, 655–63 (1991)CrossRefPubMedGoogle Scholar
  55. 55.
    de Groot, R.J., Luytjes, W., Horzinek, M.C., van der Zeijst, B.A., Spaan, W.J., Lenstra, J.A.: Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J. Mol. Biol. 196, 963–6 (1987)PubMedGoogle Scholar
  56. 56.
    Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J.: The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–11 (2003)CrossRefPubMedGoogle Scholar
  57. 57.
    Bosch, B.J., Martina, B.E., Van Der Zee, R., Lepault, J., Haijema, B.J., Versluis, C., Heck, A.J.: De Groot R, Osterhaus AD, Rottier PJ, Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc. Natl. Acad. Sci. USA 101, 8455–60 (2004)CrossRefPubMedGoogle Scholar
  58. 58.
    Snijder, E.J., Den Boon, J.A., Spaan, W.J., Weiss, M., Horzinek, M.C.: Primary structure and post-translational processing of the Berne virus peplomer protein. Virology 178, 355–63 (1990)CrossRefPubMedGoogle Scholar
  59. 59.
    Cavanagh, D.: The coronavirus surface glycoprotein. in: S.G. Siddell, (Eds.), The Coronaviridae,, (Plenum Press, New York, 1995), pp. 73–113.Google Scholar
  60. 60.
    Gallagher, T.M., Buchmeier, M.J.: Coronavirus spike proteins in viral entry and pathogenesis. Virology 279, 371–374 (2001)CrossRefPubMedGoogle Scholar
  61. 61.
    Yokomori, K., La Monica, N., Makino, S., Shieh, C.K., Lai, M.M.: Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus. Virology 173, 683–91 (1989)CrossRefPubMedGoogle Scholar
  62. 62.
    Hogue, B.G., Kienzle, T.E., Brian, D.A.: Synthesis and processing of the bovine enteric coronavirus haemagglutinin protein. J. Gen. Virol. 70, 345–52 (1989)PubMedGoogle Scholar
  63. 63.
    Kienzle, T.E., Abraham, S., Hogue, B.G., Brian, D.A.: Structure and orientation of expressed bovine coronavirus hemagglutinin-esterase protein. J. Virol. 64, 1834–8 (1990)PubMedGoogle Scholar
  64. 64.
    Bridger, J.C., Caul, E.O., Egglestone, S.I.: Replication of an enteric bovine coronavirus in intestinal organ cultures. Arch. Virol. 57, 43–51 (1978)CrossRefPubMedGoogle Scholar
  65. 65.
    Sugiyama, K., Amano, Y.: Morphological and biological properties of a new coronavirus associated with diarrhea in infant mice. Arch. Virol. 67, 241–51 (1981)CrossRefPubMedGoogle Scholar
  66. 66.
    Shieh, C.K., Lee, H.J., Yokomori, K., La Monica, N., Makino, S., Lai, M.M.: Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. J. Virol. 63, 3729–36 (1989)PubMedGoogle Scholar
  67. 67.
    Deregt, D., Sabara, M., Babiuk, L.A.: Structural proteins of bovine coronavirus and their intracellular processing. J. Gen. Virol. 68, 2863–77 (1987)PubMedGoogle Scholar
  68. 68.
    King, B., Brian, D.A.: Bovine coronavirus structural proteins. J. Virol. 42, 700–7 (1982)PubMedGoogle Scholar
  69. 69.
    King, B., Potts, B.J., Brian, D.A.: Bovine coronavirus hemagglutinin protein. Virus. Res. 2, 53–9 (1985)CrossRefPubMedGoogle Scholar
  70. 70.
    Hogue, B.G., Brian, D.A.: Structural proteins of human respiratory coronavirus OC43. Virus Res. 5, 131–44 (1986)CrossRefPubMedGoogle Scholar
  71. 71.
    Vlasak, R., Luytjes, W., Spaan, W., Palese, P.: Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc. Natl. Acad. Sci. USA 85, 4526–9 (1988)PubMedGoogle Scholar
  72. 72.
    Vlasak, R., Luytjes, W., Leider, J., Spaan, W., Palese, P.: The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol. 62, 4686–90 (1988)PubMedGoogle Scholar
  73. 73.
    Schultze, B., Herrler, G.: Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J. Gen. Virol. 73, 901–6 (1992)PubMedGoogle Scholar
  74. 74.
    Pfleiderer, M., Routledge, E., Herrler, G., Siddell, S.G.: High level transient expression of the murine coronavirus haemagglutinin-esterase. J. Gen. Virol. 72, 1309–15 (1991)PubMedGoogle Scholar
  75. 75.
    Parker, M.D., Yoo, D., Babiuk, L.A.: Expression and secretion of the bovine coronavirus hemagglutinin-esterase glycoprotein by insect cells infected with recombinant baculoviruses. J. Virol. 64, 1625–9 (1990)PubMedGoogle Scholar
  76. 76.
    Yoo, D., Graham, F.L., Prevec, L., Parker, M.D., Benko, M., Zamb, T., Babiuk, L.A.: Synthesis and processing of the haemagglutinin-esterase glycoprotein of bovine coronavirus encoded in the E3 region of adenovirus. J. Gen. Virol. 73, 2591–600 (1992)PubMedGoogle Scholar
  77. 77.
    Yokomori, K., Banner, L.R., Lai, M.M.: Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses. Virology 183, 647–57 (1991)CrossRefPubMedGoogle Scholar
  78. 78.
    Siddell, S., Wege, H., Barthel, A., ter Meulen, V.: Coronavirus JHM: Intracellular protein synthesis. J. Gen. Virol. 53, 145–55 (1981)PubMedGoogle Scholar
  79. 79.
    Siddell, S.G.: Coronavirus JHM: Tryptic peptide fingerprinting of virion proteins and intracellular polypeptides. J. Gen. Virol. 62, 259–69 (1982)PubMedGoogle Scholar
  80. 80.
    Sugiyama, K., Amano, Y.: Hemagglutination and structural polypeptides of a new coronavirus associated with diarrhea in infant mice. Arch. Virol. 66, 95–105 (1980)CrossRefPubMedGoogle Scholar
  81. 81.
    Sugiyama, K., Ishikawa, R., Fukuhara, N.: Structural polypeptides of the murine coronavirus DVIM, Arch. Virol. 89, 245–54 (1986)Google Scholar
  82. 82.
    Duckmanton, L.M., Tellier, R., Liu, P., Petric, M.: Bovine torovirus: Sequencing of the structural genes and expression of the nucleocapsid protein of Breda virus. Virus Res 58, 83–96 (1998)CrossRefPubMedGoogle Scholar
  83. 83.
    Smits, S.L., Lavazza, A., Matiz, K., Horzinek, M.C., Koopmans, M.P., de Groot, R.J.: Phylogenetic and evolutionary relationships among torovirus field variants: Evidence for multiple intertypic recombination events. J. Virol. 77, 9567–77 (2003)CrossRefPubMedGoogle Scholar
  84. 84.
    Kroneman, A., Cornelissen, L.A., Horzinek, M.C., de Groot, R.J., Egberink, H.F.: Identification and characterization of a porcine torovirus. J. Virol. 72, 3507–3511 (1998)PubMedGoogle Scholar
  85. 85.
    Wagaman, P.C., Spence, H.A., O'Callaghan, R.J.: Detection of influenza C virus by using an in situ esterase assay. J. Clin. Microbiol. 27, 832–836 (1989)PubMedGoogle Scholar
  86. 86.
    Smits, S.L., Gerwig, G.J., van Vliet, A.L., Lissenberg, A., Briza, P., Kamerling, J.P., Vlasak, R., de Groot, R.J.: Nidovirus sialate-O-acetylesterases: Evolution and substrate specificity of coronaviral and toroviral receptor-destroying enzymes. J. Biol. Chem. 280, 6933–41 (2005)CrossRefPubMedGoogle Scholar
  87. 87.
    Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Rozanov, M., Spaan, W.J., Gorbalenya, A.E.: Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004 (2003)CrossRefPubMedGoogle Scholar
  88. 88.
    Falk, K., Aspehaug, V., Vlasak, R., Endresen, C.: Identification and characterization of viral structural proteins of infectious salmon anemia virus. J. Virol. 78, 3063–71 (2004)CrossRefPubMedGoogle Scholar
  89. 89.
    Hellebø, A., Vilas, U., Falk, K., Vlasak, R.: Infectious salmon anemia virus specifically binds to and hydrolyzes 4-O-acetylated sialic acids. J. Virol. 78, 3055–62 (2004)PubMedGoogle Scholar
  90. 90.
    Duckmanton, L., Tellier, R., Richardson, C., Petric, M.: Notice of retraction to “The novel hemagglutinin-esterase genes of human torovirus and Breda virus”. [Virus Research 64 (1999) 137–149]. Virus Res. 81, 167 (2001)Google Scholar
  91. 91.
    Duckmanton, L., Tellier, R., Richardson, C., Petric, M.: The novel hemagglutinin-esterase genes of human torovirus and Breda virus. Virus. Res. 64, 137–49 (1999)CrossRefPubMedGoogle Scholar
  92. 92.
    Callebaut, P.E., Pensaert, M.B.: Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. J. Gen. Virol. 48, 193–204 (1980)PubMedGoogle Scholar
  93. 93.
    Schultze, B., Wahn, K., Klenk, H.D., Herrler, G.: Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology 180, 221–8 (1991)CrossRefPubMedGoogle Scholar
  94. 94.
    Nuttall, P.A., Harrap, K.A.: Isolation of a coronavirus during studies on puffinosis, a disease of the Manx shearwater (Puffinus puffinus). Arch. Virol. 73, 1–13 (1982)CrossRefPubMedGoogle Scholar
  95. 95.
    Klausegger, A., Strobl, B., Regl, G., Kaser, A., Luytjes, W., Vlasak, R.: Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus. J. Virol. 73, 3737–43 (1999)PubMedGoogle Scholar
  96. 96.
    Wurzer, W.J., Obojes, K., Vlasak, R.: The sialate-4-O-acetylesterases of coronaviruses related to mouse hepatitis virus: A proposal to reorganize group 2 Coronaviridae. J. Gen. Virol. 83, 395–402 (2002)PubMedGoogle Scholar
  97. 97.
    Regl, G., Kaser, A., Iwersen, M., Schmid, H., Kohla, G., Strobl, B., Vilas, U., Schauer, R., Vlasak, R.: The hemagglutinin-esterase of mouse hepatitis virus strain S is a sialate-4-O-acetylesterase. J. Virol. 73, 4721–7 (1999)PubMedGoogle Scholar
  98. 98.
    Strasser, P., Unger, U., Strobl, B., Vilas, U., Vlasak, R.: Recombinant viral sialate-O-acetylesterases. Glycoconjugate. J. 20, 551–61 (2004)Google Scholar
  99. 99.
    Talbot, P.J.: Hemagglutination by murine hepatitis viruses. Absence of detectable activity in strains 3, A59, and S grown on DBT cells. Intervirology 30, 117–20 (1989)PubMedGoogle Scholar
  100. 100.
    Künkel, F., Herrler, G.: Structural and functional analysis of the surface protein of human coronavirus OC43, Virology 195, 195–202 (1993)CrossRefPubMedGoogle Scholar
  101. 101.
    Künkel, F., Herrler, G.: Structural and functional analysis of the S proteins of two human coronavirus OC43 strains adapted to growth in different cells, Arch. Virol. 141, 1123–31 (1996)Google Scholar
  102. 102.
    Sugiyama, K., Kasai, M., Kato, S., Kasai, H., Hatakeyama, K.: Haemagglutinin-esterase protein (HE) of murine corona virus: DVIM (diarrhea virus of infant mice). Arch. Virol. 143, 1523–34 (1998)CrossRefPubMedGoogle Scholar
  103. 103.
    Schultze, B., Gross, H.J., Brossmer, R., Herrler, G.: The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J. Virol. 65, 6232–7 (1991)PubMedGoogle Scholar
  104. 104.
    Deregt, D., Babiuk, L.A.: Monoclonal antibodies to bovine coronavirus: Characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology 161, 410–20 (1987)Google Scholar
  105. 105.
    Deregt, D., Gifford, G.A., Ijaz, M.K., Watts, T.C., Gilchrist. J.E., Haines, D.M., Babiuk, L.A.: Monoclonal antibodies to bovine coronavirus glycoproteins E2 and E3: Demonstration of in vivo virus-neutralizing activity. J. Gen. Virol. 70, 993–8 (1989)PubMedGoogle Scholar
  106. 106.
    Kasai, H., Morita, E., Hatakeyama, K., Sugiyama, K.: Characterization of haemagglutinin-esterase protein (HE) of murine corona virus DVIM by monoclonal antibodies. Arch. Virol. 143, 1941–8 (1998)CrossRefPubMedGoogle Scholar
  107. 107.
    Williams, R.K., Jiang, G.S., Holmes, K.V.: Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A 88, 5533–6 (1991)PubMedGoogle Scholar
  108. 108.
    Dveksler, G.S., Pensiero, M.N., Cardellichio, C.B., Williams, R.K., Jiang, G.S., Holmes, K.V.: Dieffenbach CW, Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV. J. Virol. 65, 6881–91 (1991)PubMedGoogle Scholar
  109. 109.
    Dveksler, G.S., Pensiero, M.N., Dieffenbach, C.W., Cardellichio, C.B., Basile, A.A., Elia, P.E., Holmes, K.V.: Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc Natl Acad Sci U S A 90, 1716–20 (1993)PubMedGoogle Scholar
  110. 110.
    Dveksler, G.S., Dieffenbach, C.W., Cardellichio, C.B., McCuaig, K., Pensiero, M.N., Jiang, G.S., Beauchemin, N., Holmes, K.V.: Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J. Virol. 67, 1–8 (1993)PubMedGoogle Scholar
  111. 111.
    Yokomori, K., Lai, M.M.: Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J. Virol. 66, 6194–9 (1992)PubMedGoogle Scholar
  112. 112.
    Gagneten, S., Gout, O., Dubois-Dalcq, M., Rottier, P., Rossen, J., Holmes, K.V.: Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J. Virol. 69, 889–95 (1995)PubMedGoogle Scholar
  113. 113.
    Lavi, E., Gilden, D.H., Highkin, M.K., Weiss, S.R.: The organ tropism of mouse hepatitis virus A59 in mice is dependent on dose and route of inoculation. Lab. Anim. Sci. 36, 130–5 (1986)PubMedGoogle Scholar
  114. 114.
    Lissenberg, A., Vrolijk, M.M., van Vliet, A.L.W., Langereis, M.A., de Groot-Mijnes, J.D.F., Rottier, P.J.M., de Groot, R.J.: Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J. Virol. 79, 15054–63 (2005)CrossRefPubMedGoogle Scholar
  115. 115.
    Taguchi, F., Massa, P.T., ter Meulen, V.: Characterization of a variant virus isolated from neural cell culture after infection of mouse coronavirus JHMV. Virology 155, 267–70 (1986)CrossRefPubMedGoogle Scholar
  116. 116.
    Kazi, L., Lissenberg, A., Watson, R., de Groot, R.J., Weiss, S.R.: Expression of hemagglutinin esterase protein from recombinant mouse hepatitis virus enhances neurovirulence. J. Virol. 79, 15064–73 (2005)CrossRefPubMedGoogle Scholar
  117. 117.
    Schultze, B., Zimmer, G., Herrler, G.: Virus entry into a polarized epithelial cell line (MDCK): Similarities and dissimilarities between influenza C virus and bovine coronavirus. J. Gen. Virol. 77, 2507–14 (1996)PubMedGoogle Scholar
  118. 118.
    Popova, R., Zhang, X.: The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection. Virology 294, 222–36 (2002)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Virology Section, Department of Infectious Diseases and Immunology, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands

Personalised recommendations