Effect of Co-Use of Mineral Wool Production Waste and Catalytic Cracking Catalyst Waste on Ceramic Structure and Properties

The combined use of waste from the production of mineral wool (MW) and spent catalyst (SC) from catalytic cracking of petroleum products in the production of ceramics was investigated. It was found that, compared with the control composition, in the firing process at temperature 1080°C the MW acts as a fluxing additive, increasing the density of the samples by 3.3%, strength in compression by 19.2%, and shrinkage deformation by 16.1% and reducing water absorption by a factor of 3. The combined use ofMWand SC in the composition (SC increasing from 10 to 20%) contributes to the intensification of the crystallization of the minerals anorthite and mullite, which contributes to shrinkage deformation reduction by up to a factor of 1.85 without degradation of the mechanical properties as compared with the control composition with no additives.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1.

    L. Wanga, Y. Jin, Y. Nieb, and R. Li, “Recycling of municipal solid waste incineration fly ash for ordinary Portland cement production: A real-scale test resources,” Resources, Conservation and Recycling, 54(12), 1428 – 1435 (2010).

    Article  Google Scholar 

  2. 2.

    Y. Song, B. Li, E. H. Yang, et al., “Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete,” Cement and Concrete Composites, 56, 51 – 58 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    J. Yang, B. Xiao, and A. R. Boccaccini, “Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash,” Fuel, 88(7), 1275 – 1280 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    V. Mymrin, W. Klitzke, K. Alekseev, et al., “Red clay application in the utilization of paper production sludge and scrap glass to fabricate ceramic materials,” Appl. Clay Sci., 107, 28 – 35 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    R. Stonys, D. Kuznetsov, A. Krasnikovs, et al., “Reuse of ultrafine mineral wool production waste in the manufacture of refractory concrete,” J. Envir. Manag., 176, 149 – 156 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    V. G. Karayannis, “Development of extruded and fired bricks with steel industry byproduct towards circular economy,” J. Building Eng., 7, 382 – 387 (2016).

    Article  Google Scholar 

  7. 7.

    S. M. S. Kazmia, S. Abbas, M. J. Munira, and A. Khitab, “Exploratory study on the effect of waste rice husk and sugarcane bagasse ashes in burnt clay bricks,” J. Building Eng., 7, 372 – 378 (2016).

    Article  Google Scholar 

  8. 8.

    Y. Taha, M. Benzaazoua, R. Hakkou, and M. Mansori, “Natural clay substitution by calamine processing wastes to manufacture fired bricks,” J. Cleaner Prod., 135, 847 – 858 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    H. Li, D. Liuliu, Z. Jiang, et al., “Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls,” J. Cleaner Prod., 133, 1017 – 1026 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    P. Muñoz V., M. P. Morales O., V. Letelier G., and M. A. Mendívil G., “Fired clay bricks made by adding wastes: Assessment of the impact on physical, mechanical and thermal properties,” Constr. Building Mater., 125, 241 – 252 (2016).

    Article  Google Scholar 

  11. 11.

    C. Coletti, L. Maritan, G. Cultrone, and C. Mazzoli, “Use of industrial ceramic sludge in brick production: Effect on aesthetic quality and physical properties,” Constr. Building Mater., 124, 219 – 227 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    A. M. M. Soltan, K. Pöhler, F. Fuchs, et al., “Clay-bricks from recycled rock tailings,” Ceram. Int., 42(15), 16685 – 16696 (2016).

    Google Scholar 

  13. 13.

    E. Bernardo, E. Bonomo, and A. Dattoli, “Optimisation of sintered glass–ceramics from an industrial waste glass,” Ceram. Int., 36(5), 16751680.

  14. 14.

    M. Erol, S. Kucukbayrak, and A. Ersoy-Mericboyu, “The influence of the binder on the properties of sintered glass-ceramics produced from industrial wastes,” Ceram. Int., 35(7), 2609 – 2617 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    S. N. Monteiro, J. Alexandre, J. I. Margem, et al., “Incorporation of sludge waste from water treatment plant into red ceramic,” Constr. Building Mater., 22(6), 1281 – 1287 (2008).

    Article  Google Scholar 

  16. 16.

    V. Ducman and T. Kopar, “The influence of different waste additions to clay-product mixtures,” Mater. Technol., 41(6), 289 – 293 (2007).

    CAS  Google Scholar 

  17. 17.

    Y. N. El-Shimy, Sh. K. Amin, S. A. El-Sherbiny, and M. F. Abadir, “The use of cullet in the manufacture of vitrified clay pipes,” Constr. Building Mater., 73, 452 – 457 (2014).

    Article  Google Scholar 

  18. 18.

    L. Pérez-Villarejo, F. A. Corpas-Iglesias, S. Martínez-Martínez, et al., “Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry,” Constr. Building Mater., 35, 656 – 665 (2012).

    Article  Google Scholar 

  19. 19.

    O. Kizinieviè, V. Balkevièius, J. Pranckevièienë, and V. Kizinieviè, “Investigation of the usage of centrifuging waste of mineral wool melt (CMWW), contaminated with phenol and formaldehyde, in manufacturing of ceramic products,” Waste Manag., 34(8), 1488 – 1494 (2014).

    Article  Google Scholar 

  20. 20.

    N. V. Boltakova, G. R. Faseeva, R. R. Kabirov, et al., “Utilization of inorganic industrial wastes in producing construction ceramics. Review of Russian experience for the years 2000 – 2015,” Waste Manag., 60, 230 – 246 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    K. Eidukevièius, A. Laukaitis, and V. Siaurys, “Investigation of properties of briquettes from mineral wool waste, clay, cement dust, dolomite,” in: International Conference Silicate Technology, Kaunas (2003), pp. 138 – 143.

  22. 22.

    J. Pranckevièienë, V. Balkevièius, and A. A. Špokauskas, “Investigations on properties of sintered ceramics out of low-melting illite clay and additive of fine-dispersed nepheline syenite,” Mater. Sci., 16(3), 231 – 235 (2010).

    Google Scholar 

  23. 23.

    J. Dweck, C. A. Pinto, and P. M. Büchler, “Study of a Brazilian spent catalyst as cement aggregate by thermal and mechanical analysis,” J. Thermal Analysis Calorim., 92(1), 121 – 127 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    D. D. Sun, J. H. Tay, H. K. Cheong, et al., “Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass–ceramic matrix,” J. Hazardous Mater., 87(1 – 3), 213 – 223 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    N. Su, H. Y. Fang, Z. H. Chen, and F. S. Liu, “Reuse of waste catalysts from petrochemical industries for cement substitution,” Cement Concrete Res., 30(11), 1773 – 1783 (2000).

    CAS  Article  Google Scholar 

  26. 26.

    N. Su, Z. H. Chen, and H. Y. Fang, “Reuse of spent catalyst as fine aggregate in cement mortar,” Cement Concrete Comp., 23(1), 111 – 118 (2001).

    CAS  Article  Google Scholar 

  27. 27.

    M. Marafi and A. Stanislaus, “Spent catalyst waste management: A review,” Resources, Conservation and Recycling, 52(6), 859 – 873 (2008).

    Article  Google Scholar 

  28. 28.

    A. Ramezani, S. M. Emami, and S. Nemat, “Reuse of spent FCC catalyst, waste serpentine and kiln rollers waste for synthesis of cordierite and cordierite-mullite ceramics,” J. Hazardous Mater., 338, 177 – 185 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    V. M. Sokolov, L. G. Litvin, V. V. Martynenko, et al., “Substitution of alumina by spent catalyst carrier in the refractory production,” in: REWAS’04Global Symposium on Recycling, Waste Treatment and Clean Technology, Madrid (2004), pp. 381 – 390.

  30. 30.

    F. Vargas, E. Restrepo, J. E. Rodríguez, et al., “Solid-state synthesis of mullite from spent catalysts for manufacturing refractory brick coatings,” Ceram. Int., 44(4), 3556 – 3562 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    J. D. Martínez, S. Betancourt-Parra, I. Carvajal-Marín, and M. Betancur-Vélez, “Ceramic light-weight aggregates production from petrochemical wastes and carbonates (NaHCO3 and CaCO3) as expansion agents,” Constr. Building Mater., 180, 124 – 133 (2018).

    Article  Google Scholar 

  32. 32.

    O. Kizinieviè, R. Maèiulaitis, V. Kizinieviè, and G. Yakovlev, “Utilization of technogenic material from an oil-processing company in the production of building ceramics,” Steklo Keram., No. 2, 29 – 32 ((2006); O. Kizinieviè, R. Maèiulaitis, V. Kizinieviè, and G. Yakovlev, “Utilization of technogenic material from an oil-processing company in the production of building ceramics,” Glass Ceram., 63(1 – 2), 64 – 67 (2006).

  33. 33.

    V. Antonoviè, I. Pundienë, R. Stonys, et al., “A review of the possible applications of nanotechnology in refractory concrete,” J. Civil Eng. Manag., 16(4), 595 – 602 (2010).

    Article  Google Scholar 

  34. 34.

    R. J. Galán-Arboledas, M. T. Cotes-Palomino, S. Bueno, and C. Martínez-García, “Evaluation of spent diatomite incorporation in clay based materials for lightweight bricks processing,” Constr. Building Mater., 144, 327 – 337 (2017).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to I. Pranckeviciene.

Additional information

Translated from Steklo i Keramika, No. 10, pp. 34 – 40, October, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pranckeviciene, I., Pundiene, I. Effect of Co-Use of Mineral Wool Production Waste and Catalytic Cracking Catalyst Waste on Ceramic Structure and Properties. Glass Ceram 77, 394–399 (2021). https://doi.org/10.1007/s10717-021-00314-y

Download citation

Key words

  • production wastes
  • structure
  • ceramic
  • shrinkage deformation
  • strength in compression