Effect of Molarity and Temperature of Alkaline Activator Solution on the Rheological Properties and Structure Formation of Alkali-Activated Refractory Materials

The effect of the molarity (from 3.64 to 1.74 M) of an alkaline activator solution (AAS) and temperature (from 10 to 20°C) of a mixture of alkali-activated materials (AAM) based on chamotte and metakaolin on the rheological properties, structure development on solidification, and strength of samples after firing at temperatures 800 and 1000°C was studied. It was determined that reducing the molarity of AAS and raising the temperature reduces the viscosity of the AAM mixture. Increasing the molarity of AAS and the temperature of the mixture accelerates structure formation and increases the strength of samples from 8.8 to 22 MPa on solidification and from 6.8 to 20 MPa after firing at temperature 1000°C. The density of the samples after firing increases from 1270 to 1510 kg/m3, and water absorption decreases from 15.4 to 13.4%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. C. G. Juenger, F.Winnefeld, J. L. Provis, et al., “Advances in alternative cementitious binders,” Cement Concrete Res., 41, 1232 – 1243 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    G. Habert, J. B. d’Espinose de Lacaillerie, and N. Roussel, “An environmental evaluation of geopolymer based concrete production: reviewing current research trends,” J. Cleaner Prod., 19, 1229 – 1238 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    P. Duxson, A. Fernandez-Jimenez, J. L. Provis, et al., “Geopolymer technology: the current state of the art,” J. Mater. Sci., 42, 2917 – 2933 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    Ch. Panagiotopoulou, E. Kontori, Th. Perraki, and G. Kakali, “Dissolution of aluminosilicate minerals and by-products in alkaline media,” J. Mater. Sci., 42, 2967 – 2973 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    L. Weng, K. Sagoe-Crentsil, T. Brown, and S. Song, “Effects of aluminates on the formation of geopolymers,” Mater. Sci. Eng., 117, 163 – 168 (2005).

    Article  Google Scholar 

  6. 6.

    Á. Palomo, S. Alonso, A. Fernández-Jiménez, et al., “Alkaline activation of fly ashes: NMR study of the reaction products,” J. Am. Ceram. Soc., 87, 1141 – 1145 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, “The role played by the reactive alumina content in the alkaline activation of fly ashes,” Micropor. Mesopor. Mater., 91, 111 – 119 (2006).

    Article  Google Scholar 

  8. 8.

    J. Davidovits, “Geopolymers: inorganic polymeric new materials,” J. Thermal Anal., 37, 1633 – 1656 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    P. Duxson, G. C. Lukey, and J. S. J. V. Deventer, “The thermal evolution of metakaolin geopolymers: Part 2. Phase stability and structural development,” J. Non-Cryst. Solids, 353, 2186 – 2200 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    C. Shi, A. F. Jiménez, and A. Palomo, “New cements for the 21st century: the pursuit of an alternative to Portland cement,” Cement Concrete Res., 41, 750 – 763 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    I. Ismail, S. A. Bernal, J. L. Provis, et al., “Microstructural changes in alkali activated fly ash/slag geopolymers; with sulfate exposure,” Mater. Struct., 46, 361 – 373 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Q. Wan, F. Rao, S. Song, et al., “Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios,” Cement Concrete Comp., 79, 45 – 52 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    K. Vance, A. Dakhane, G. Sant, and N. Neithalath, “Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration,” Rheologica Acta, 53, 843 – 855 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    A. Poulesquen, F. Frizon, and D. Lambertin, “Rheological behavior of alkali-activated metakaolin during geopolymerization,” J. Non-Cryst. Solids, 357, 3565 – 3571 (2013).

    Article  Google Scholar 

  15. 15.

    H. Xu and J. S. J. Van Deventer, “The geopolymerisation of aluminosilicate minerals,” Int. J. Mineral Proc., 59, 247 – 266 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    N. Murayama, H. Yamamoto, and J. Shibata, “Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction,” Int. J. Mineral Proc., 64, 1 – 17 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    P. Nath and P. K. Sarker, “Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature,” Cement Concrete Comp., 55, 205 – 214 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    H. Güllü, A. Cevik, K. M. A. Al-Ezzi, and M. E. Gülsan, “On the rheology of using geopolymer for grouting: A comparative study with cement-based grout included fly ash and cold bonded fly ash,” Constr. Build. Mater., 196, 594 – 610 (2019).

    Article  Google Scholar 

  19. 19.

    Z. Zhang, J. L. Provis, A. Reid, and H. Wang, “Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete,” Cement Concrete Comp., 62, 97 – 105 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    M. Palacios, M. M. Alonso, C. Varga, and F. Puertas, “Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes,” Cement Concrete Comp., 95, 277 – 284 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    A. Favier, G. Habert, J. B. d’Espinose de Lacaillerie J, and N. Roussel, “Mechanical properties and compositional heterogeneities of fresh geopolymer pastes,” Cement Concrete Res., 48, 9 – 16 (2013).

  22. 22.

    D. Hardjito, C. C. Cheak, and C. H. L. Lee, “Strength and setting times of low calcium fly ash-based geopolymer mortar,” Modern Appl. Sci., 2, 3 – 11 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    B. S. K. Reddy, J. Varaprasad, and K. N. K. Reddy, “Strength and workability of low lime fly-ash based geopolymer concrete,” Ind. J. Sci. Technol., 3, 1188–1189 (2010).

    CAS  Google Scholar 

  24. 24.

    F. A. Memon, M. F. Nuruddin, S. Khan, et al., “Effect of sodium hydroxide concentration on fresh properties and compressive strength of self-compacting geopolymer concrete,” J. Eng. Sci. Technol., 8, 44 – 56 (2013).

    Google Scholar 

  25. 25.

    D.-W. Zhang, D. Wang, Z. Liu, and F. Xie, “Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content,” Constr. Build. Mater., 187, 674 – 680 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    R. Pouhet, M. Cyr, and R. Bucher, “Influence of the initial water content in flash calcined metakaolin-based geopolymer,” Constr. Build. Mater., 201, 421 – 429 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, et al., “Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends,” J. Mater. Sci., 46, 5477 – 5486 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    R. P. Williams and A. van Riessen, “Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD,” Fuel, 89, 3683 – 3692 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    W. D. A. Rickard, J. Temuujin, and A. van Riessen, “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition,” J. Non-Cryst. Solids, 358, 1830 – 1839 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Y. Zhao, J. Ye, X. Lu, et al., “Preparation of sintered foam materials by alkali-activated coal fly ash,” J. Hazardous Mater., 174, 108 – 112 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures,” Cement Concrete Res., 37, 1583 – 1589 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    P. Duxson, G. C. Lukey, S. J. Jannie, and J. S. J. van Deventer, “Physical evolution of Na-geopolymer derived from metakaolin up to 1000°C,” J. Mater. Sci., 42, 3044 – 3054 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    V. F. F. Barbosa and K. J. D. MacKenzie, “Synthesis and thermal behaviour of potassium sialate geopolymers,” Mater. Lett., 57, 1477 – 1482 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    J. L. Bell, P. E. Driemeyer, and W. M. Kriven, “Formation of ceramics from metakaolin-based geopolymers. Part II. K-based geopolymer,” J. Am. Ceram. Soc., 92, 607 – 615 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    L. Dembovska, G. Bumanis, L. Vitola, and D. Bajare, “Influence of fillers on the alkali activated chamotte,” IOP Conf. Series: Mater. Sci. Eng. (2017).

  36. 36.

    F. Puertas, C. Varga, and M. M. Alonso, “Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution,” Cement Concrete Comp., 53, 279 – 288 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    I. Tekin, “Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes,” Constr. Build. Mater., 127, 607 – 617 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    S. Lee, A. van Riessen, and C.-M. Chon, “Benefits of sealedcuring on compressive strength of fly ash-based geopolymers,” Materials, 9, 598 (2016).

    Article  Google Scholar 

  39. 39.

    J. L. Provis, P. Duxson, J. S. J. Van Deventer, and G. C. Lukey, “The role of mathematical modelling and gel chemistry in advancing geopolymer technology,” Chem. Eng. Res. Design, 83, 853 – 860 (2005).

    CAS  Article  Google Scholar 

  40. 40.

    T. Pyatina and T. Sugama, “Set controlling additive for thermal- shock resistant cement,” GRC Trans., 38, 251 – 257 (2014).

    Google Scholar 

  41. 41.

    A. Fernández-Jiménez, J. Y. Pastor, A. Martýn, and A. Palomo, “High-temperature resistance in alkali-activated cement,” J. Am. Ceram. Soc., 93(10), 3411 – 3417 (2010).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Pundiene.

Additional information

Translated from Steklo i Keramika, No. 2, pp. 18 – 23, February, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pundiene, I., Pranckeviciene, I. & Zhu, C. Effect of Molarity and Temperature of Alkaline Activator Solution on the Rheological Properties and Structure Formation of Alkali-Activated Refractory Materials. Glass Ceram 77, 51–56 (2020). https://doi.org/10.1007/s10717-020-00236-1

Download citation

Key words

  • alkali-activated materials
  • viscosity
  • structure development
  • strength in compression