Skip to main content
Log in

Production of Ceramic Materials Based on SiC with Low-Melting Oxide Additives

  • SCIENCE FOR CERAMIC PRODUCTION
  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Dense materials based on silicon carbide were obtained by liquid-phase sintering. The oxides MgO, Y2O3 , and Al2O3 , corresponding to the composition of yttrium-aluminum garnet and the triple eutectic point on the line of binary sections garnet-spinel, were used as the sintering additive. The oxides were deposited on the surface of powder by the SiC method of coprecipitation from a solution of salts. The maximum density (ρrel = 99.5%) was attained on SiC materials which include 20% (by weight) sintering additives consisting of a three-component oxide mixture at temperature 1800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Here and below, content by weight, %.

References

  1. V. A. Izhevskyi, L. A. Genova, J. C. Bressiani, and A. H. A. Bressiani, “Silicon carbide. Structure, properties and processing,” Cerâmica, 46(297), 4 – 13 (2000).

    Article  Google Scholar 

  2. K. A. Schwetz, “Silicon carbide based hard materials,” in: Handbook of Ceramic Hard Materials, Wiley-VCH, Weinheim (2000), pp. 683 – 748.

  3. A. Can, M. Herrmann, D. S. McLachlan, et al., “Densification of liquid phase sintered silicon carbide,” J. Eur. Ceram. Soc., 26(9), 1707 – 1713 (2006).

    Article  Google Scholar 

  4. Y.W. Kim, J. Y. Kim, S. H. Rhee, and D. Y. Kim, “Effect of initial particle size on microstructure of liquid-phase sintered σ-silicon carbide,” J. Eur. Ceram. Soc., 20, 945 – 949 (2000).

    Article  Google Scholar 

  5. T. Tachiwaki, M. Yoshinaka, K. Hirota, et al., “Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics,” Solid State Comm., 119(10–11), 603 – 606 (2001).

    Article  Google Scholar 

  6. S.-G. Lee,W.-H. Shim, J.-Y. Kim, et al., “Effect of sintering-additive composition on fracture toughness of liquid-phase-sintered SiC ceramics,” J. Mater. Sci. Lett., 20, 143 – 146 (2001).

    Article  Google Scholar 

  7. K.-S. Cho, H.-J. Choi, J.-G. Lee, and Y. W. Kim, “R-curve behavior of layered silicon carbide ceramics with surface fine microstructure,” J. Mater. Sci., 36, 2189 – 2193 (2001).

    Article  Google Scholar 

  8. E. Nogales, A. Montone, F. Cardellini, et al., “Visible cathodoluminescence from mechanically milled germanium,” Semicond. Sci. Techn., 17, 1267 – 1271 (2002).

    Article  Google Scholar 

  9. Z. Huang, D. C. Jia, Y. Zhou, and Y. G. Liu, “A new sintering additive for silicon carbide ceramic,” Ceram. Int., 29, 13 – 17 (2003).

    Article  Google Scholar 

  10. N. Hidaka, Y. Hirata, S. Sameshima, and H. Sueyoshi, “Hot-pressing and mechanical properties of SiC ceramics with polytitanocarbosilane,” J. Ceram. Proc. Res., 5(4), 331 – 336 (2004).

    Google Scholar 

  11. X.-Zh. Guo and H. Yang, “Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method,” J. Zhejiang Univ SCI., 6(3), 213 – 218 (2005).

    Article  Google Scholar 

  12. V. G. Sevastyanov, E. P. Simonenko, N. P. Simonenko, and N. T. Kuznetsov, “Synthesis of fine-dispersed yttrium-aluminum garnet Y3Al5O12 via sol-gel technique,” in: 15th European Conference on Composite Materials, Venice, Italy, 24 – 28 June 2012, Venice (2012), Vol. 4, pp. 1 – 8.

  13. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, “Synthesis of ultrafine yttrium aluminum garnet using sol-gel technology,” Russ. J. Inorg. Chem., 57(12), 1521 – 1528 (2012).

    Article  Google Scholar 

  14. Zh. Yongheng, “Surface modification of ceramic powders by complexes of metal ions in aqueous media,” J. Mater. Sci. Lett., 21, 1723 – 1725 (2002).

    Article  Google Scholar 

  15. Y.-T. Nien, Y.-L. Chen, I.-G. Chen, et al., “Synthesis of nanoscaled yttrium aluminum garnet phosphor by coprecipitation method with HMDS treatment,” Mater. Chem. Phys., 93, 79 – 83 (2005).

    Article  Google Scholar 

  16. S. N. Perevislov, I. B. Panteleev, S. V. Vikhman, et al., “Co-precipitation of oxides from a solution of salts on the surface of silicon carbide particles,” Ogneup. Tekh. Keram., No. 9, 9 – 16 (2005).

  17. S. N. Perevislov, I. B. Panteleev, A. P. Shevchik, and M. V. Tomkovich, “Microstructure and mechanical properties of SiC-materials sintered in the liquid phase with the addition of a finely dispersed agent,” Refract. Industr. Ceram., 58(5), 577 – 582 (2018).

    Article  Google Scholar 

  18. S. Kikkawa, A. Kijimab, K. Hirotab, and O. Yamaguchi, “Soft solution preparation methods in a ZrO2–Al2O3 binary system,” Solid State Ionics, 151, 359 – 364 (2002).

    Article  Google Scholar 

  19. J. L. Lorca, J. Y. Pastor, and P. Poza, “Influence of the Y2O3 content and temperature on the mechanical properties of melt-grown Al2O3–ZrO2 eutectics,” J. Am. Ceram. Soc., 87(4), 633 – 639 (2004).

    Article  Google Scholar 

  20. D. D. Nesmelov, O. A. Kozhevnikov, S. S. Ordanyan, and S. N. Perevislov, “Deposition of the eutectic composition Al2O3–ZrO2(Y2O3) on the surface of SiC particles,” Steklo Keram., No. 2, 9 – 14 (2017); D. D. Nesmelov, O. A. Kozhevnikov, S. S. Ordanyan, and S. N. Perevislov, “Precipitation of the eutectic composition Al2O3–ZrO2(Y2O3) on the surface of SiC particles,” Glass Ceram., 74(1 – 2), 43 – 47 (2017).

  21. H. S. Kim, M. K. Kim, S. B. Kang, et al., “Bending strength and crackhealing behavior of Al2O3 /SiC composites ceramics,” Mater. Sci. Eng. A, 483–484, 672 – 675 (2008).

    Article  Google Scholar 

  22. W. Nakao, M. Ono, S. Lee, et al., “Critical crack-healing condition for SiC whisker reinforced alumina under stress,” J. Eur. Ceram. Soc., 25, 3649 – 3655 (2005).

    Article  Google Scholar 

  23. K. Andoa, M.-Ch. Chua, K. Tsujib, et al., “Crack healing behaviour and high-temperature strength of mullite/SiC composite ceramics,” J. Eur. Ceram. Soc., 22, 1313 – 1319 (2002).

    Article  Google Scholar 

  24. K. W. Nama, M. K. Kimb, S. W. Parka, et al., “Crack-healing behavior and bending strength of Si3N4 /SiC composite ceramics by SiO2 colloidal,” Mater. Sci. Eng. A, 471, 102 – 105 (2007).

    Article  Google Scholar 

  25. D.-C. Park, T. Yano, T. Iseki, and K. Urabe, “Effect of nitrate salts as sintering additives during the ball-milling process of silicon nitride powders,” J. Am. Ceram. Soc., 83(12), 2967 – 2973 (2000).

    Article  Google Scholar 

  26. N. S. Akhmetov, General and Inorganic Chemistry [in Russian], Vyssh. Shkola, Moscow (2006).

    Google Scholar 

  27. S. N. Perevislov, V. D. Chupov, S. S. Ordanyan, and V. V. Tomkovich, “Obtaining high-density materials of silicon carbide by the method of liquid-phase sintering in the system of components SiC–Al2O3–Y2O3–MgO,” Ogneup. Tekh. Keram., No. 4/5, 26 – 32 (2011).

  28. M. Castillo-Rodríguez, A. Munoz, and A. Domínguez-Rodríguez, “Effect of atmosphere and sintering time on the microstructure and mechanical properties at high temperatures of α-SiC sintered with liquid phase Y2O3–Al2O3 ,” J. Europ. Ceram. Soc., 26(12), 2397 – 2405 (2006).

    Article  Google Scholar 

  29. S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Steklo Keram., No. 7, 15 – 18 (2016); S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Glass Ceram., 73(7 – 8), 249 – 252 (2016).

  30. S. N. Perevislov, “Mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives,” Steklo Keram., No. 7, 34 – 38 (2013); S. N. Perevislov, “Mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives,” Glass Ceram., 70(7 – 8), 265 – 268 (2013).

  31. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, and M. V. Tomkovich, “Hot-pressed ceramic SiC–YAG materials,” Inorg. Mater., 53(2), 220 – 225 (2017).

    Article  Google Scholar 

Download references

This work was supported by the Russian Foundation for Basic Research (grant Mol a 18-33-00383).

The methodological part of this work (XPA, granulometry and scanning electron microscopy) was performed as part of the government task No. 007-00129-18-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated from Steklo i Keramika, No. 10, pp. 30 – 37, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N., Lysenkov, A.S., Titov, D.D. et al. Production of Ceramic Materials Based on SiC with Low-Melting Oxide Additives. Glass Ceram 75, 400–407 (2019). https://doi.org/10.1007/s10717-019-00094-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-019-00094-6

Key words

Navigation