Advertisement

Glass and Ceramics

, Volume 74, Issue 11–12, pp 434–439 | Cite as

Synthesis of New Materials in the Boron–Carbon System

  • V. P. Filonenko
  • A. V. Nozhkina
  • R. I. Romanov
  • P. V. Zinin
  • S. A. Titov
  • A. M. Lomonosov
  • P. D. Pupyrev
  • K. M. Bulatov
  • A. A. Bykov
  • A. S. Anokhin
  • I. B. Kutuza
  • I. A. Troyan
  • V. Yu. Fominskii
SCIENCE FOR CERAMIC PRODUCTION
  • 60 Downloads

Experimental results from the synthesis of diamond-like BC x compounds with the aid of high-pressure techniques and laser sputtering methods are presented. A combination of unique characteristics in these compounds can be attained by varying the B/C ratio. The possibility of sputtering carbon films of micron or nanosize thickness with high boron content opens up a way to use such materials on industrial scales. Hetero-diamonds with high boron content have high elastic moduli and boron-doped diamond polycrystals possess metallic conductivity.

Key words

superhard materials polycrystalline diamond boron-containing heterodiamonds elastic properties 

Notes

This research was funded by a Russian Science Foundation grant (RNF 17-12-01535).

References

  1. 1.
    R. A. Andrievskii, “Micro- and nanosize boron carbide: synthesis, structure, and properties,” Usp. Khim., 81(6), 549 – 559 (2012).CrossRefGoogle Scholar
  2. 2.
    E. A. Ekimov, V. A. Sidorov, E. D. Bauer, et al., “Superconductivity in diamond,” Nature, 428, 542 – 545 (2004).CrossRefGoogle Scholar
  3. 3.
    J. E. Moussa and M. L. Cohen, “Constraints on T-c for superconductivity in heavily boron-doped diamond,” Phys. Rev. B., 77(6), 064518 (2008).CrossRefGoogle Scholar
  4. 4.
    P. V. Zinin, L. C. Ming, H. A. Ishii, et al., “Phase transition in BCx system under high-pressure and high-temperature: Synthesis of cubic dense BC3 nanostructured phase,” J. Appl. Phys., 111(11), 114905 (2012).CrossRefGoogle Scholar
  5. 5.
    P. V. Zinin, Y. S. Liu, K. Burgess, et al., Elastic properties, sp3 fraction, and Raman scattering in low and high pressure synthesized diamond-like boron rich carbides,” J. Appl. Phys., 116(13), 9 (2014).CrossRefGoogle Scholar
  6. 6.
    J. E. Lowther, “The role played by computation in understanding hard materials,” Materials, 4(6), 1104 – 1116 (2011).CrossRefGoogle Scholar
  7. 7.
    Y. G. Lu, S. Turner, E. A. Ekimov, et al., “Boron-rich inclusions and boron distribution in HPHT polycrystalline superconducting diamond,” Carbon, 86, 156 – 162 (2015).CrossRefGoogle Scholar
  8. 8.
    E. A. Ekimov, V. P. Sirotinkin, T. B. Shatalova, and S. G. Lyapin, “Thermally stable, electrically conductive diamond material prepared by high-pressure, high-temperature processing of a graphite plus boron carbide mixture,” Inorg. Mater., 51(3), 225 – 229 (2015).CrossRefGoogle Scholar
  9. 9.
    E. A. Ekimov, O. S. Kudryavtsev, A. A. Khomich, et al., “High-Pressure Synthesis of Boron-Doped Ultrasmall Diamonds from an Organic Compound,” Adv. Mater., 27(37), 5518 – 5522 (2015).CrossRefGoogle Scholar
  10. 10.
    J. Krautkrämer and H. Krautkrämer, Ultrasonic Testing of Materials, Springer-Verlag, NY (1990).CrossRefGoogle Scholar
  11. 11.
    J. E. Field, The Properties of Diamond, Academic Press, London (1979).Google Scholar
  12. 12.
    M. H. Manghnani, “Elastic properties of cBN as a function of temperature and pressure: a comparison with diamond,” in: 5th NIRIM International Symposium on Advances Materials (ISAM’98), National Institute for Research in Inorganic Materials, Chicherster (1998), pp. 73 – 78.Google Scholar
  13. 13.
    D. Schneider, T. Witke, T. Schwarz, et al., “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Technol., 126(2 – 3), 136 – 141 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. P. Filonenko
    • 1
  • A. V. Nozhkina
    • 2
  • R. I. Romanov
    • 3
  • P. V. Zinin
    • 4
  • S. A. Titov
    • 4
  • A. M. Lomonosov
    • 5
  • P. D. Pupyrev
    • 5
  • K. M. Bulatov
    • 4
  • A. A. Bykov
    • 4
  • A. S. Anokhin
    • 1
    • 7
  • I. B. Kutuza
    • 4
  • I. A. Troyan
    • 6
  • V. Yu. Fominskii
    • 3
  1. 1.L. F. Vereshchagin Institute of High-Pressure PhysicsTroitskRussia
  2. 2.National Research Technological University MISiSMoscowRussia
  3. 3.National Research Nuclear University MIFIMoscowRussia
  4. 4.Scientific-Technical Center for Unique Instrument EngineeringRussian Academy of SciencesMoscowRussia
  5. 5.A. M. Prokhorov Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  6. 6.Federal Scientific Research Center for Crystallography and PhotonicsRussian Academy of SciencesMoscowRussia
  7. 7.A. A. Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations