Skip to main content
Log in

Determination of the Hydraulic Radius of the Porous Structure of Ceramic Materials

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The existing relations describing capillary inhibition in porous materials based on an ideal model and mercury porosimetry data are analyzed. It is shown that in transitioning from the hydraulic radius of an ideal model to the hydraulic radius of a capillary-porous material the tortuosity and narrowing (widening) of capillaries, the increase in temperature associated with sorption of water vapor, and the variation of the water viscosity as a function of the hydraulic radius of the capillary must be taken into account. The experimental data are used to make a quantitative evaluation of these effects. On this basis a relation is proposed for determining the hydraulic radius of the porous structure of the ceramic materials used for construction articles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. E. W. Washburn, “Dynamics of capillary flow,” Phys. Rev., 17, 273 – 283 (1921).

    Article  Google Scholar 

  2. D. Benavente, P. Lock, M. Angeles Garcia Del Cura, et al., “Predicting the capillary imbibition of porous rocks from microstructure,” Transport in Porous Media, 49, 59 – 76 (2002).

  3. J. Schoelkopf, P. A. C. Gane, C. J. Ridgway, et al., “Practical observation of deviation from Lucas-Washburn scaling in porous media,” Colloids Surf. A: Physicochem. Eng. Aspects, 206, 445 – 454 (2002).

    Article  Google Scholar 

  4. J. Schoelkopf, C. J. Ridgway, P. A. C. Gane, et al., “Measurement and network modeling of liquid permeation into compacted mineral blocks,” J. Colloid Interface Sci., 227, 119 – 131 (2000).

    Article  Google Scholar 

  5. C. J. Ridgway, P. A. Gane, and J. Schoelkopf, “Effect of capillary element aspect ratio on the dynamic imbibition with porous networks,” J. Colloid Interface Sci., 252, 373 – 382 (2002).

    Article  Google Scholar 

  6. G. N. Dul’nev and V. V. Novikov, Thermal Insulation in Industry: Theory and Calculation [in Russian], Stroiizdat, Moscow (2003).

  7. G. N. Dul’nev and V. V. Novikov, Transport Processes in Nonuniform Media [in Russian], Énergoatomizdat, Moscow (1991).

  8. J. Kubik, Przepływy wilgoci w materia 3 ach budowlanych, Politechnika Opolska, Opole (2000).

  9. C. J. Ridgway, P. A. C. Gane, Abd El-Ghany el Abd, et al., “Water absorption into construction materials: comparison of neutron radiography data with network absorption models,” Transport in Porous Media, 63, 503 – 525 (2006).

  10. C. J. Ridgway and P. A. C. Gane, “Dynamic absorption into simulated porous structures,” Colloids Surf. A: Physicochem. Eng. Aspects, 206, 217 – 239 (2002).

    Article  Google Scholar 

  11. P. A. C. Gane, C. J. Ridgway, and J. Schoelkopf, “Absorption rate and volume dependency on the complexity of porous network structures,” Transport in Porous Media, 54, 79 – 106 (2004).

    Article  Google Scholar 

  12. M. Raimondo, M. Dondi, D. Gardini, et al., “Predicting the initial rate of water absorption in clay bricks,” Construct. Building Mater., 23, 2623 – 2630 (2009).

    Article  Google Scholar 

  13. EN ISO 9346:2007: Hygrothermal performance of building and materials; Physical quantities for mass transfer: Vocabulary (2007).

  14. M. Janz, Methods of Measuring the Moisture Diffusivity at High Moisture Levels (Report TVBM 3076), University of Lund, Lund (1997); URL: http://lup.lub.lu.se/record/526308.

  15. V. Nikitsin, B. Backiel-Brzozowska, and M. Bo3tryk, “Wpływ parametrow procesu wypalania na wskaŸniki podciągania kapilarnego wody w tworzywach ceramicznych,” Ceramica/Ceramics, 91, 587 – 592 (2005).

  16. M. Karaglou, A. Moropoulou, A. Giakoumaki, et al., “Capillary rise kinetics of some building materials,” J. Colloid Interface Sci., 284, 260 – 264 (2005).

    Article  Google Scholar 

  17. G. Cultrone, E. Sebastian, K. Elert, et al., “Influence of mineralogy and firing temperature on the porosity of bricks,” J. Europ. Ceram. Soc., 24, 547 – 564 (2004).

    Article  Google Scholar 

  18. S. Roels, Modelling Unsaturated Moisture Transport in Heterogeneous Limestone, Author's Abstract of Doctoral’s Thesis, KU Leuven, Leuven (2000).

  19. A. Kičaitè, R. Mačiulaitis, J. MalaiЉkienè, et al., “Structure and destruction of processes of building ceramic products,” in: Modern Building Materials, Structures and Techniques: Proc. of the 9th Intern. Conf., Vilnius, May 16 – 18, 2007, Vilnius (2007), pp. 65 – 66.

  20. V. I. Nikitsin and B. Backiel-Brzozowska, “Methods of determination of liquid transfer coefficient in building materials,” Int. J. Heat Mass Transfer, 55, 4318 – 4322 (2012).

    Article  Google Scholar 

  21. H. M. Künzel, Simultaneous Heat and Moisture Transport in Building Components: One- and Two-Dimensional Calculation Using Simple Parameters, Author’s Abstract of Doctoral’s Thesis, Fraunhofer Institute for Building Physics, Stuttgart (1995).

  22. A. V. Afonin and V. I. Nikitin, “Calculation of the pore permeability of capillary-porous materials taking account of the flow of films and condensate,” Vestn. BrGTU: Stroit-vo Arkhitektura, No. 1, 34 – 40 (2003).

  23. L. Shen and Z. Chen, “Critical review of the impact of tortuosity on diffusion,” Chem. Eng. Sci., 62, 3748 – 3755 (2007).

    Article  Google Scholar 

  24. S. Roels, K. Vandersteen, and J. Carmeliet, “Measuring and simulating moisture uptake in a fractured porous medium,” Adv. Water Resources, 26, 237 – 246 (2003).

    Article  Google Scholar 

  25. V. I. Nikitsin and B. Backiel-Brzozowska, “Determination of capillary tortuosity coefficient in calculations of moisture transfer in building materials,” Int. J. Heat Mass Transfer, 56, 30 – 34 (2013).

    Article  Google Scholar 

  26. M. I. Nizovtsev, A. N. Sterlyagov, and V. I. Terekhov, “Propagation of a thermal front in capillary permeation of porous materials,” Polzunovskii Vestn., No. 1, 39 – 43 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Guryev.

Additional information

Translated from Steklo i Keramika, No. 7, pp. 25 – 34, July, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guryev, V.V., Nikitsin, V.I. & Kofanov, V.A. Determination of the Hydraulic Radius of the Porous Structure of Ceramic Materials. Glass Ceram 73, 258–265 (2016). https://doi.org/10.1007/s10717-016-9869-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-016-9869-9

Key words

Navigation