Glass and Ceramics

, Volume 73, Issue 7–8, pp 258–265 | Cite as

Determination of the Hydraulic Radius of the Porous Structure of Ceramic Materials


The existing relations describing capillary inhibition in porous materials based on an ideal model and mercury porosimetry data are analyzed. It is shown that in transitioning from the hydraulic radius of an ideal model to the hydraulic radius of a capillary-porous material the tortuosity and narrowing (widening) of capillaries, the increase in temperature associated with sorption of water vapor, and the variation of the water viscosity as a function of the hydraulic radius of the capillary must be taken into account. The experimental data are used to make a quantitative evaluation of these effects. On this basis a relation is proposed for determining the hydraulic radius of the porous structure of the ceramic materials used for construction articles.

Key words

capillary imbibition hydraulic radius of capillaries tortuosity of capillaries narrowing and widening of capillaries sorption of water vapor viscosity of water 


  1. 1.
    E. W. Washburn, “Dynamics of capillary flow,” Phys. Rev., 17, 273 – 283 (1921).CrossRefGoogle Scholar
  2. 2.
    D. Benavente, P. Lock, M. Angeles Garcia Del Cura, et al., “Predicting the capillary imbibition of porous rocks from microstructure,” Transport in Porous Media, 49, 59 – 76 (2002).Google Scholar
  3. 3.
    J. Schoelkopf, P. A. C. Gane, C. J. Ridgway, et al., “Practical observation of deviation from Lucas-Washburn scaling in porous media,” Colloids Surf. A: Physicochem. Eng. Aspects, 206, 445 – 454 (2002).CrossRefGoogle Scholar
  4. 4.
    J. Schoelkopf, C. J. Ridgway, P. A. C. Gane, et al., “Measurement and network modeling of liquid permeation into compacted mineral blocks,” J. Colloid Interface Sci., 227, 119 – 131 (2000).CrossRefGoogle Scholar
  5. 5.
    C. J. Ridgway, P. A. Gane, and J. Schoelkopf, “Effect of capillary element aspect ratio on the dynamic imbibition with porous networks,” J. Colloid Interface Sci., 252, 373 – 382 (2002).CrossRefGoogle Scholar
  6. 6.
    G. N. Dul’nev and V. V. Novikov, Thermal Insulation in Industry: Theory and Calculation [in Russian], Stroiizdat, Moscow (2003).Google Scholar
  7. 7.
    G. N. Dul’nev and V. V. Novikov, Transport Processes in Nonuniform Media [in Russian], Énergoatomizdat, Moscow (1991).Google Scholar
  8. 8.
    J. Kubik, Przepływy wilgoci w materia 3 ach budowlanych, Politechnika Opolska, Opole (2000).Google Scholar
  9. 9.
    C. J. Ridgway, P. A. C. Gane, Abd El-Ghany el Abd, et al., “Water absorption into construction materials: comparison of neutron radiography data with network absorption models,” Transport in Porous Media, 63, 503 – 525 (2006).Google Scholar
  10. 10.
    C. J. Ridgway and P. A. C. Gane, “Dynamic absorption into simulated porous structures,” Colloids Surf. A: Physicochem. Eng. Aspects, 206, 217 – 239 (2002).CrossRefGoogle Scholar
  11. 11.
    P. A. C. Gane, C. J. Ridgway, and J. Schoelkopf, “Absorption rate and volume dependency on the complexity of porous network structures,” Transport in Porous Media, 54, 79 – 106 (2004).CrossRefGoogle Scholar
  12. 12.
    M. Raimondo, M. Dondi, D. Gardini, et al., “Predicting the initial rate of water absorption in clay bricks,” Construct. Building Mater., 23, 2623 – 2630 (2009).CrossRefGoogle Scholar
  13. 13.
    EN ISO 9346:2007: Hygrothermal performance of building and materials; Physical quantities for mass transfer: Vocabulary (2007).Google Scholar
  14. 14.
    M. Janz, Methods of Measuring the Moisture Diffusivity at High Moisture Levels (Report TVBM 3076), University of Lund, Lund (1997); URL:
  15. 15.
    V. Nikitsin, B. Backiel-Brzozowska, and M. Bo3tryk, “Wpływ parametrow procesu wypalania na wskaŸniki podciągania kapilarnego wody w tworzywach ceramicznych,” Ceramica/Ceramics, 91, 587 – 592 (2005).Google Scholar
  16. 16.
    M. Karaglou, A. Moropoulou, A. Giakoumaki, et al., “Capillary rise kinetics of some building materials,” J. Colloid Interface Sci., 284, 260 – 264 (2005).CrossRefGoogle Scholar
  17. 17.
    G. Cultrone, E. Sebastian, K. Elert, et al., “Influence of mineralogy and firing temperature on the porosity of bricks,” J. Europ. Ceram. Soc., 24, 547 – 564 (2004).CrossRefGoogle Scholar
  18. 18.
    S. Roels, Modelling Unsaturated Moisture Transport in Heterogeneous Limestone, Author's Abstract of Doctoral’s Thesis, KU Leuven, Leuven (2000).Google Scholar
  19. 19.
    A. Kičaitè, R. Mačiulaitis, J. MalaiЉkienè, et al., “Structure and destruction of processes of building ceramic products,” in: Modern Building Materials, Structures and Techniques: Proc. of the 9th Intern. Conf., Vilnius, May 16 – 18, 2007, Vilnius (2007), pp. 65 – 66.Google Scholar
  20. 20.
    V. I. Nikitsin and B. Backiel-Brzozowska, “Methods of determination of liquid transfer coefficient in building materials,” Int. J. Heat Mass Transfer, 55, 4318 – 4322 (2012).CrossRefGoogle Scholar
  21. 21.
    H. M. Künzel, Simultaneous Heat and Moisture Transport in Building Components: One- and Two-Dimensional Calculation Using Simple Parameters, Author’s Abstract of Doctoral’s Thesis, Fraunhofer Institute for Building Physics, Stuttgart (1995).Google Scholar
  22. 22.
    A. V. Afonin and V. I. Nikitin, “Calculation of the pore permeability of capillary-porous materials taking account of the flow of films and condensate,” Vestn. BrGTU: Stroit-vo Arkhitektura, No. 1, 34 – 40 (2003).Google Scholar
  23. 23.
    L. Shen and Z. Chen, “Critical review of the impact of tortuosity on diffusion,” Chem. Eng. Sci., 62, 3748 – 3755 (2007).CrossRefGoogle Scholar
  24. 24.
    S. Roels, K. Vandersteen, and J. Carmeliet, “Measuring and simulating moisture uptake in a fractured porous medium,” Adv. Water Resources, 26, 237 – 246 (2003).CrossRefGoogle Scholar
  25. 25.
    V. I. Nikitsin and B. Backiel-Brzozowska, “Determination of capillary tortuosity coefficient in calculations of moisture transfer in building materials,” Int. J. Heat Mass Transfer, 56, 30 – 34 (2013).CrossRefGoogle Scholar
  26. 26.
    M. I. Nizovtsev, A. N. Sterlyagov, and V. I. Terekhov, “Propagation of a thermal front in capillary permeation of porous materials,” Polzunovskii Vestn., No. 1, 39 – 43 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. V. Guryev
    • 1
  • V. I. Nikitsin
    • 2
  • V. A. Kofanov
    • 3
  1. 1.Moscow Scientific-Research and Design Institute of Typology and Experimental DesignMoscowRussia
  2. 2.Pope John Paul II State School of Higher EducationBiala PodlaskaPoland
  3. 3.Brest State Technical UniversityBrestBelarus

Personalised recommendations