Advertisement

Glass and Ceramics

, Volume 73, Issue 3–4, pp 117–123 | Cite as

Optically Transparent Ceramic (Review)

  • A. A. Kachaev
  • D. V. Grashchenkov
  • Yu. E. Lebedeva
  • S. St. Solntsev
  • O. L. Khasanov
GLASS CERAMIC MATERIALS

The fabrication particularities of optically transparent ceramic materials for different applications are examined. The technologies used for compacting and sintering transparent ceramics are described: cold pressing followed by sintering in different media, hot pressing, hot isostatic pressing, spark plasma sintering, and slip casting.

Key words

transparent ceramic laser ceramic optical properties spark plasma sintering hot pressing sintering slip casting molding compaction aluminum oxide zirconium oxide spinel 

References

  1. 1.
    E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “Glass and ceramics based high-temperature composite materials for use in aviation technology,” Steklo Keram., No. 4, 7 – 11(2012); E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “Glass and ceramics based high-temperature composite materials for use in aviation technology,” Glass Ceram., 69(3 – 4), 109 – 112 (2012).Google Scholar
  2. 2.
    E. N. Kablov, D. V. Grashchenkov, N., V. Isaeva, and S. S. Solntsev, “Promising high-temperature ceramic composite materials,” Ross. Khim. Zh., 54(1), 20 – 24 (2010).Google Scholar
  3. 3.
    Y. L. Ikesue, T. Aung, T. Taira, et al., “Messing. Progress in ceramic lasers,” Annual Review Mater. Res., 36, 397 – 429 (2006).CrossRefGoogle Scholar
  4. 4.
    A. V. Belyakov and A. N. Sukhozhak, “Production of transparent ceramics (review),” Steklo Keram., No. 1 – 2, 14 – 20 (1995); A. V. Belyakov and A. N. Sukhozhak, “Production of transparent ceramics (review),” Glass Ceram., 52(1 – 2), 14 – 19 (1995).Google Scholar
  5. 5.
    A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, and S. S. Semenov, Ceramics for Machine Engineering [in Russian], Nauchtekhlitizdat, Moscow (2003), pp. 344 – 347.Google Scholar
  6. 6.
    O. L. Khasanov, V. V. Osipov, E. S. Dvilis, et al., “Nanoscaled grain boundaries and pores, microstructure and mechanical properties of translucent Yb:[LuxY(1–x)O3] ceramics,” J. Alloys Comp., 509(1), 338 – 342 (2011).CrossRefGoogle Scholar
  7. 7.
    O. L. Khasanov, Yu. L. Kopylov, V. B. Kravchenko, et al., “Problems of compaction of nanopowders for obtaining high-density, high-transparency oxide ceramics,” Nanotekh., No. 2(14), 3 – 9 (2008).Google Scholar
  8. 8.
    Y. Wang, B. Lu, X. Sun, et al., “Synthesis of nanocrystalline Sc2O3 powder and fabrication of transparent Sc2O3 ceramics,” Adv. Appl. Ceram., 110(2), 95 – 98 (2011).CrossRefGoogle Scholar
  9. 9.
    R. Cook, M. Kochis, I. Reimanis, and H. J. Kleebe, “A new powder production route for transparent spinel windows: powder synthesis and window properties,” in: R. W. Tustison (ed.), Window and Dome Technologies and Materials IX (2005), Vol. 5786, pp. 41 – 47.Google Scholar
  10. 10.
    K. Tsukuma, I. Yamashita, and T. Kusunose, “Transparent 8 mol % Y2O3 – ZrO2 (8Y) ceramics,” J. Am. Ceram. Soc., 91(3), 813 – 818 (2008).CrossRefGoogle Scholar
  11. 11.
    K. Tsukuma, “Transparent MgAl2O4 spinel ceramics produced by HIP postsintering,” J. Ceram. Soc. Jpn., 114(1334), 802 – 806 (2006).CrossRefGoogle Scholar
  12. 12.
    M. Suarez, A. Fernandez, J. L. Menendez, et al., Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials, Sintering Applications (2013); URL: http://www.intechopen.com/books/sinteringapplications/challenges-andopportunities-for-spark-plasmasintering-a-key-technologyfor-a-new-generation-of-mat.
  13. 13.
    G. A. Vydrik, T. V. Solov’ev, and F. Ya. Kharitonov, Transparent Ceramics [in Russian], Énergiya, Moscow (1980).Google Scholar
  14. 14.
    X. Jin, L. Gao, and J. Sun, “Highly transparent alumina spark plasma sintered from common-grade commercial powder: the effect of powder treatment,” J. Am. Ceram. Soc., 93(5), 1232 – 1236 (2010).Google Scholar
  15. 15.
    S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater., 58(6), 516 – 519 (2008).CrossRefGoogle Scholar
  16. 16.
    A. A. DiGiovanni, L. Fehrenbacher, and D. W. Roy, “Hard transparent domes and windows from magnesium aluminate spinel,” in: R. W. Tustison (ed.), Window and Dome Technologies and Materials IX (2005), Vol. 5786, pp. 56 – 63.Google Scholar
  17. 17.
    A. F. Dericioglu, A. R. Boccaccini, I. Dlouhy, and Y. Kagawa, “Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics,” Mater. Trans., 46(5), 996 – 1003 (2005).CrossRefGoogle Scholar
  18. 18.
    N. Frage, S. Cohen, S. Meir, et al., “Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel,” J. Mater. Sci., 42(9), 3273 – 3275 (2007).CrossRefGoogle Scholar
  19. 19.
    K. Morita, B. N. Kim, K. Hiraga, and H. Yoshida, “Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing,” Scr. Mater., 58(12), 1114 – 1117 (2008).CrossRefGoogle Scholar
  20. 20.
    A. Krell, J. Klimke, and T. Hutzler, “Advanced spinel and sub-mm Al2O3 for transparent armour applications,” J. Europ. Ceram. Soc., 29(2), 275 – 281 (2009).CrossRefGoogle Scholar
  21. 21.
    A. S. Chainikova, L. A. Orlova, N. V. Popovich, et al., “Dispersion-hardened composites based on glass/glass-ceramic matrices: properties and applications (review),” Aviats. Mater. Tekhnol., No. 3, 45 – 54 (2014).Google Scholar
  22. 22.
    E. V. Tinaykova and D. V. Grashchenkov, “Heat-insulation material based on mullite-corundum and quartz fibers,” Aviats. Mater. Tekhnol., No. 3, 43 – 47 (2012).Google Scholar
  23. 23.
    H. Mizuta, K. Oda, Y. Shibasaki, et al., “Preparation of highstrength and translucent alumina by hot isostatic pressing,” J. Am. Ceram. Soc., 75(2), 469 – 473 (1992).CrossRefGoogle Scholar
  24. 24.
    K. Hayashi, O. Kobayashi, S. Toyoda, and K. Morinaga, “Transmission optical properties of polycrystalline alumina with submicron grains,” Mater. Trans. JIM, 32(11), 1024 – 1029 (1991).CrossRefGoogle Scholar
  25. 25.
    J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater., 32(1), 62 – 68 (2009).CrossRefGoogle Scholar
  26. 26.
    A. M. Zimichev and E. P. Solov’eva, “Zirconium dioxide fiber for high-temperature applications,” Aviats. Mater. Tekhnol., No. 3, 55 – 61 (2014).Google Scholar
  27. 27.
    U. Peuchert, Y. Okano, Y. Menke, et al., “Transparent cubic-ZrO2 ceramics for application as optical lenses,” J. Europ. Ceram. Soc., 29(2), 283 – 291 (2009).CrossRefGoogle Scholar
  28. 28.
    S. Bagaev, V. Osipov, M. Ivanov, et al., “High-strength ceramic based on Nd3+ : Y2O3,” Fotonika, No. 5, 24 – 29 (2007).Google Scholar
  29. 29.
    D. O. Lemeshev, E. S. Lukin, N. A. Makarov, and N. A. Popova, Prospects for creating new optically transparent materials with yttrium oxide and yttrium aluminum garnet (review),” Steklo Keram., No. 4, 25 – 27 (2008); D. O. Lemeshev, E. S. Lukin, N. A. Makarov, and N. A. Popova, Prospects for creating new optically transparent materials with yttrium oxide and yttrium aluminum garnet (review),” Glass Ceram., 65(3 – 4), 128 – 130 (2008).Google Scholar
  30. 30.
    S. R. Podowitz, R. Gaume, and R. S. Feigelson, “Effect of europium concentration on densification of transparent Eu:Y2O3 scintillator ceramics using hot pressing,” J. Am. Ceram. Soc., 93(1), 82 – 88 (2010).CrossRefGoogle Scholar
  31. 31.
    J. Mouzon, A. Maitre, L. Frisk, et al., “Fabrication of transparent yttria by HIP and the glass-encapsulation method,” J. Europ. Ceram. Soc., 29(2), 311 – 316 (2009).CrossRefGoogle Scholar
  32. 32.
    H. Yoshida, K. Morita, B. N. Kim, et al., “Densification of nanocrystalline yttria by low temperature spark plasma sintering,” J. Am. Ceram. Soc., 91(5), 1707 – 1710 (2008).CrossRefGoogle Scholar
  33. 33.
    J. G. Li, T. Ikegami, and T. Mori, “Fabrication of transparent, sintered Sc2O3 ceramics,” J. Am. Ceram. Soc., 88(4), 817 – 821 (2005).CrossRefGoogle Scholar
  34. 34.
    K. Serivalsatit and J. Ballato, “Submicrometer grain-sized transparent erbium-doped scandia ceramics,” J. Am. Ceram. Soc., 93(11), 3657 – 3662 (2010).CrossRefGoogle Scholar
  35. 35.
    L. Q. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Europ. Ceram. Soc., 31(9), 1597 – 1602 (2011).CrossRefGoogle Scholar
  36. 36.
    D. Savastru, S. Miclos, C. Cotirlan, et al., “Nd:YAG Laser system for ophthalmology: Biolaser-1,” J. Optoelectron. Adv. Mater., 6(2), 497 – 502 (2004).Google Scholar
  37. 37.
    A. Ikesue, I. Furusata, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc., 78(1), 225 – 228 (1995).CrossRefGoogle Scholar
  38. 38.
    T. Yanagitani, H. Yagi, and Y. Yamasaki, Production of Fine Powder of Yttrium Aluminum Garnet, Japanese Pat. 10-101411 (1998).Google Scholar
  39. 39.
    N. Frage, S. Kalabukhov, N. Sverdlov, et al., “Dariel Effect of the spark plasma sintering (SPS) parameters and LiF doping on the mechanical properties and the transparency of polycrystalline Nd-YAG,” Ceram. Int., 38(7), 5513 – 5519 (2012).CrossRefGoogle Scholar
  40. 40.
    R. Chaim, M. Kalina, and J. Z. Shen, “Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering,” J. Europ. Ceram. Soc., 27(11), 3331 – 3337 (2007).CrossRefGoogle Scholar
  41. 41.
    N. Zhang, B. Liang, X. Y. Wang, et al., “The pressure-less sintering and mechanical properties of ALON ceramic,” Mater. Sci. Eng. A, 528(19 – 20), 6259 – 6262 (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. A. Kachaev
    • 1
  • D. V. Grashchenkov
    • 1
  • Yu. E. Lebedeva
    • 1
  • S. St. Solntsev
    • 1
  • O. L. Khasanov
    • 2
  1. 1.All-Russia Scientific-Research Institute of Aviation Materials, State Scientific Center of the Russian Federation (VIAM)MoscowRussia
  2. 2.National Research Tomsk Polytechnic University (NI TPU)TomskRussia

Personalised recommendations