Glass and Ceramics

, Volume 72, Issue 3–4, pp 139–141 | Cite as

Removal of Iron Minerals from Glass Quartz Sand by Flotation

  • S. I. Evdokimov
  • S. V. Galachieva
  • V. S. Puzin
  • V. S. Evdokimov
  • D. V. Tebloeva

Flotation by a vapor-air mixture in a ‘two streams’ scheme was used to de-iron unconditioned sands with 0.34 wt.% Fe2O3: the foam product of the flotation stream I is separated from 1/2 of the sands and mixed with the other 1/2 of the sands by flotation stream II. A distinguishing feature of flotation stream II is that a mixture of air with hot (> 100°C) water vapor is used as the gas phase, which yields VS-030-V grade sand. The consumption of the warming vapor in the vapor-air flotation technology equals 9.7 × 10-4 Gcal/ton of sand.

Key words

glass production quartz sands removal of iron minerals flotation steam-air mixture 


This article is based on work performed in fulfilling a grant contract No. 14.577.21.0142, dated November 28, 2014, with the unique identifier of applied scientific research and experimental work (project) RFMEFI57714X0142.


  1. 1.
    V. P. Zhukov, E. V. Barochkin, A. Yu. Nenaezdnikov, et al., “Evolution of the interphase heat-exchange surface in a bubbling bed,” Vest. IGÉU, No. 4, 1 – 5 (2012).Google Scholar
  2. 2.
    A. N. Mel’sitov and V. A. Petushkov, “Local wave processes caused in a liquid by limiting transitions of an isolated vapor bubble,” Matem. Model., 15(11), 51 – 68 (2003).Google Scholar
  3. 3.
    A. V. Korolev, “Characteristics of the pressure jump in vapor-water injectors,” Énergetika: Izv. Vyssh. Uchebn. Zaved. i Énerg. Ob’edinenii SNG, No. 6, 31 – 36 (2009).Google Scholar
  4. 4.
    V. Sh. Shagapov, S. A. Lepikhin, and I. A. Chiglintsev, “Propagation of compression waves in a bubble liquid, accompanied by hydrate formation,” Teplofiz. Aeromekh., 17(2), 247 – 260 (2010).Google Scholar
  5. 5.
    S. N. Vavilov, A. V. Zhatukhin, and A. N. Kireeva, “Investigation of the contact of cold heat-carrier with a superheated surface,” Teplovye Prots. v Tekh., No. 3, 118 – 121 (2011).Google Scholar
  6. 6.
    L. B. Boinovich, “Long-range surface forces and their role in the development of nanotechnology,” Usp. Khim., 76(5), 510 – 528 (2007).CrossRefGoogle Scholar
  7. 7.
    S. I. Evdokimov and A. M. Pan’shin, “Surface forces in particle flotation and aggregation processes,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Met., No. 3, 7 – 11 (2009).Google Scholar
  8. 8.
    A. M. Pan’shin, S. I. Evdokimov, and S. V. Artemov, “Research on the flotation of a vapor-air mixture,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Met., No. 1, 3 – 10 (2012).Google Scholar
  9. 9.
    A. C. Simonsen, P. L. Hansen, and B. Klosgen, “Nanobubbles give evidence of incomplete wetting at a hydrophobic interface,” J. Colloid Interface Sci., 273, 291 – 299 (2004).CrossRefGoogle Scholar
  10. 10.
    M. A. Hampton and A. V. Nguyen, “Nanobubbles and the nanobubble bridging capillary force,” Adv. Colloid Interface Sci., 154(1 – 2), 30 – 55 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. I. Evdokimov
    • 1
  • S. V. Galachieva
    • 1
  • V. S. Puzin
    • 1
  • V. S. Evdokimov
    • 1
  • D. V. Tebloeva
    • 1
  1. 1.North Caucasus Mining and Metallurgical Institute (State Technological University) (SKGMI (GTU))VladikavkazRepublic of North Ossetiya-Alaniya

Personalised recommendations