Advertisement

Glass and Ceramics

, Volume 71, Issue 5–6, pp 148–151 | Cite as

Spectrophotometric Determination of the Redox State of Glass

  • S. V. Mulevanov
  • V. M. Nartsev
Science for Glass Production
  • 82 Downloads

The main difficulties of making an accurate determination of the redox state of glass are noted. The specific effect of tin on the valence equilibrium of iron in the surface layers of float-glass is shown. The spectrophotometric method of determining heterovalent forms of iron in commercial silicate glasses, which is applicable for flat and hollow articles, is described. The method is distinguished by high speed and accessibility.

Key words

commercial silicate glass redox state of glass optical spectrophotometry valence equilibrium of iron calibration curves phenanthroline method tin and iron ‘hump’ 

References

  1. 1.
    S. V. Mulevanov, B. Z. Bliskovskii, V. I. Korovushkin, and A. I. Smirnova, “Valence and coordination state of iron in multicomponent glasses with pyroxene composition,” Fiz. Khim. Stekla, 12(6), 722 – 726.Google Scholar
  2. 2.
    S. V. Mulevanov, N. I. Min’ko, and S. A. Kemenov, “Effect of phosphorus on the structural-chemical and optical properties of sheet construction glass,” Vestn. Belgorod. Gosudar. Tekhnol. Univ. im. V. G. Shukhova, No. 10, 207 – 209 (2005).Google Scholar
  3. 3.
    A. B. Atkarskaya, “Effect of the oxidation–reduction potential on the proneness of glass to form bubbles,” Steklo Keram., No. 4, 3 – 8 (2010); A. B. Atkarskaya, “Effect of the oxidation–reduction potential on the proneness of glass to form bubbles,” Glass Ceram., 67(3 – 4), 99 – 104 (2010).Google Scholar
  4. 4.
    A. B. Atkarskaya and M. I. Zaitseva, “Redox equilibrium of iron in silicate glasses,” Steklo Keram., No. 10, 5 – 8 (2005); A. B. Atkarskaya and M. I. Zaitseva, “Redox equilibrium of iron in silicate glasses,” Glass Ceram., 62(9 – 10), 304 – 307 (2005).Google Scholar
  5. 5.
    V. V. Sakovich, L. A. Bobrova, A. M. Lazareva, and T. V. Sharykhina, “Monitoring chemical composition of medical glass by means of atomic emission spectroscopy,” Steklo Keram., No. 4, 7 – 9 (2006);. V. V. Sakovich, L. A. Bobrova, A. M. Lazareva, and T. V. Sharykhina, “Monitoring chemical composition of medical glass using atomic emission spectroscopy,” Glass Ceram., 63(3 – 4), 110 – 112 (2006).Google Scholar
  6. 6.
    M. Fialin, C. Wagner, and N. Metrich, “Fe3+/ΣFe vs. FeLα peak energy for minerals and glasses: Recent advances with the electron microprobe,” Am. Mineral., 86, 456 – 465 (2001).Google Scholar
  7. 7.
    J. A. Howell, J. R. Hellmann, and C. L. Muhlstein, “Nanomechanical properties of commercial float glass,” J. Non-Cryst. Solids, 354(17), 1891 – 1899 (2008).CrossRefGoogle Scholar
  8. 8.
    A.-M. Flank, P. Lagarde, J. Jupille, and H. Montigaud, “Redox profile of the glass surface,” J. Non-Cryst. Solids, 357, 3200 – 3206 (2011).CrossRefGoogle Scholar
  9. 9.
    R. Klement, J. Kraxner, and M. Liška, “Spectroscopic analysis of iron doped glasses with composition close to the E-glass: a preliminary study,” Ceramics – Silikaty, 53(3), 180 – 183 (2009).Google Scholar
  10. 10.
    Yu. A. Guloyan, “Conditions for producing amber and brown glass,” Steklo Keram., No. 10, 3 – 5 (2005); Yu. A. Guloyan, “Conditions for producing amber and brown glass,” Glass Ceram., 62(9 – 10), 301 – 303 (2005).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.V. G. Shukhov Belgorod State Technological University (BGTU)BelgorodRussia

Personalised recommendations