Glass and Ceramics

, Volume 71, Issue 1–2, pp 64–67 | Cite as

Luminophores Based on Aluminum Yttrium Garnet (Review)

  • V. Kh. Kim
  • A. I. Zakharov
  • V. A. Chashchin

The methods for synthesis and properties of luminophores based on aluminum yttrium garnets activated by rare-earth elements for LED sources of light are reviewed. The composition dependences of the spectral characteristics of the luminophores are presented.


aluminum yttrium garnet luminescence spectrum LED luminophore 


  1. 1.
    A. A. Setlur, “Phosphors for LED-based solid-state lighting,” in: The Electrochemical Society Interface (2009), Winter, pp. 32 – 36.Google Scholar
  2. 2.
    M. Medraj, “High temperature neutron diffraction study of the Al2O3–Y2O3 system,” J. Euro. Ceram. Soc., No. 26, 3515 – 3524 (2006).Google Scholar
  3. 3.
    C. H. Lu, H. C. Hong, and R. Jaganathan, “Sol-gel synthesis and photoluminescent properties of cerium-ion doped yttrium aluminium garnet powders,” J. Mater. Chem., No. 12, 2525 – 2530 (2002).Google Scholar
  4. 4.
    Y. Zhou, J. Lin, M. Yu, et al., “Synthesis-dependent luminescence properties of Y3Al5O12: Re3+ (Re = Ce, Sm, Tb) phosphors,” Mater. Lett., No. 56, 628 – 636 (2002).Google Scholar
  5. 5.
    S. K. Shi and J. Y. Wang, “Combustion synthesis of Eu3+ activated Y3Al5O12 phosphor nanoparticles,” J. Alloys Compounds, No. 327, 82 – 86 (2001).Google Scholar
  6. 6.
    L. Mancic, K. Marinkovic, B. A. Marinkovic, et al., “YAG : Ce3+ nanostructured particles obtained via spray pyrolysis of polymeric precursor solution,” J. Euro. Ceram. Soc., No. 30, 577 – 582 (2010).Google Scholar
  7. 7.
    H. Y. Yang, J. W. Chung, B. K. Moon, et al., “Enhancement of Photoluminescence in Y3Al5O12 :Eu3+ Ceramics by Li Doping,” J. Korean Phys. Soc., 52(1), 116 – 119 (2008).CrossRefGoogle Scholar
  8. 8.
    Yu. D. Ivakin, M. N. Danchevskaya, P. A. Yanechko, and G. P. Murav’eva, “Kinetics and mechanism of low-temperature synthesis of yttrium-aluminum garnet,” Vestn. Moskovsk. Univ., Ser. 2, Khim., 41(2), 89 – 92 (2000).Google Scholar
  9. 9.
    Y. Pan, M. Wu, and Q. Su, “Comparative investigation on synthesis and photolumenescence of YAG:Ce phosphor,” Mater. Sci. Eng., No. 106, 251 – 256 (2004).Google Scholar
  10. 10.
    L. Chen, C. C. Lin, C. W. Yeh and R. S. Liu, “Light Converting Inorganic Phosphors for White Light-Emitting Diodes,” Materials, No. 3, 2172 – 2195 (2010).Google Scholar
  11. 11.
    A. Ellens and F. Zwaschka, Leuchtstoff für Lichtquellen und zugehörige Lichtquelle, International Patent Application No. EP1095998 A2 (2001).Google Scholar
  12. 12.
    H. Sun, X. Zhang, and Z. Bai, “Synthesis and characterization of nano-sized YAG : Ce, Sm spherical phosphors,” J. Rare Earths, 31(3), 231 – 234 (2013).CrossRefGoogle Scholar
  13. 13.
    P. Wu and A. D. Pelton, “Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems,” J. Alloys Compounds, 179(1 – 2), 259 – 287 (1992).CrossRefGoogle Scholar
  14. 14.
    B. Cockayne, D. B. Gasson, D. Findlay, et al., “The growth and laser characteristics of yttrium-gadolinium-aluminium garnet single crystals,” J. Phys. Chem. Solids, 29(6), 905 – 910 (1968).CrossRefGoogle Scholar
  15. 15.
    Y. D. Huh, Y. S. Cho, and Y. R. Do, “The optical properties of (Y1–xGdx)3–z(Al1–yGay)5O12: Cez phosphors for white LED,” Bull. Korean Chem. Soc., 23(10), 1435 (2002).CrossRefGoogle Scholar
  16. 16.
    W. W. Holloway and M. Kestigian, “Optical properties of cerium- activated garnet crystals,” J. Opt. Soc. Am., 59(1), 60 – 63 (1969).CrossRefGoogle Scholar
  17. 17.
    A. L. Allred, “Electronegativity values from thermochemical data,” J. Inorg. Nucl. Chem., 17(3 – 4), 215 – 221 (1961).CrossRefGoogle Scholar
  18. 18.
    C. C. Chiang, M. S. Tsai, and M. H. Hon, “Preparation of cerium- activated GAG phosphor powders. Influence of Co-doping on crystallinity and luminescent properties,” J. Electrochem. Soc., 154(10), 326 – 329 (2007).CrossRefGoogle Scholar
  19. 19.
    M. Nazarov, J. Sohn, and C. Yoon, “Cerium-europium double activated terbium aluminium garnet phosphor for LED application,” Samsung Electro-Mechanics Co, LTD (2006), pp. 365 – 372.Google Scholar
  20. 20.
    F. Kummer, F. Zwaschka, A. Ellens, et al., Luminous Substance for a Light Source and Light Source Associated Therewith, International Patent Application, No. US6669866 B1 (2003).Google Scholar
  21. 21.
    H. M. Lee, Y. S. Cheng, and C. Y. Huang, “The effect of MgO doping on the structure and photoluminescence of YAG : Tb phosphor,” J. Alloys Compounds, 479(1 – 2), 759 – 763 (2009).CrossRefGoogle Scholar
  22. 22.
    G. N. Mel’nikov, S. P. Chernykh, and N. P. Soshchin, “Yellow- orange photoluminophore and light-emitting diode based on it, Patent No. 2010121214_05,” Byull. Izobr. Polezn. Modeli, No. 19, 2455335, 2 (2012).Google Scholar
  23. 23.
    Y. Liu, “Luminescence and energy transfer in Ca3Sc2Si3O12: Ce3+, Mn2+ white LED phosphors,” J. Luminescence, 133, 21 – 24 (2013).CrossRefGoogle Scholar
  24. 24.
    X. J. Liu, H. L. Li, R. J. Xie, et al., “Spectroscopic properties of nano-sized cerium-doped lutetium aluminum garnet phosphors via sol-gel combustion process,” J. Luminescence, 124(1), 75 – 80 (2007).CrossRefGoogle Scholar
  25. 25.
    A. Katelnikovas, “Synthesis and optical properties of yellow emitting garnet phosphors for pcLEDs,” J. Luminescence, 136, 17 – 25 (2013).CrossRefGoogle Scholar
  26. 26.
    S. Ye, F. Xiao, Y. X. Pan, et al., “Phosphors in phosphorconverted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mater. Sci. Eng. R: Reports, 71(1), 1 – 34.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. Kh. Kim
    • 1
  • A. I. Zakharov
    • 1
  • V. A. Chashchin
    • 1
  1. 1.D. I. Mendeleev Russian Chemical Technology University (RKhTU)MoscowRussia

Personalised recommendations